The fluid equations, shell models and the limit of vanishing viscosity
流体方程、壳模型和消失粘度极限
基本信息
- 批准号:0803268
- 负责人:
- 金额:$ 13.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-07-01 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Although all "real" fluids are at least very weakly viscous, in many physical situations the subtle limit of vanishing viscosity is the relevant regime. In particular, the seminal ideas of Kolmogorov and Onsager concerning the statistical theories of turbulence are based on predictions about the behaviour of fluids in the range of vanishing viscosity. The Euler and Navier-Stokes equations are very challenging mathematically because the particular nature of their nonlinearity.This project addresses some of the nonlinear phenomena that arise in the fluid equations, particularly those connected with the limit of vanishing viscosity. So called "shell models" are studied: these are composed of an infinite system of nonlinearly coupled ordinary differential equations which, although less complex than the Euler and Navier-Stokes equations retain certain important features of their nonlinearity. It has been shown in previous NSF-supported work that the inviscid model behaves precisely as Onsager conjectured for a turbulent fluid. In the project that will be supported by this award, it is proposed to prove Kolmogorov's "law" for the viscous model, namely that the average dissipation rate of the viscous system stays positive and converges to the average turbulent dissipation rate in the vanishing viscosity limit. Another line of research concerns instabilities in fluid motion, and the interrelation between linear and nonlinear instability in the vanishing viscosity limit.The mathematical study of the differential equations that model fluid motion forms an essential foundation for many applications, such as oceanography, meteorology, astrophysics and engineering. An issue of particular importance is the behaviour of turbulent fluids. Under this award, Friedlander will be using mathematical techniques to study the cascade of energy to smaller and smaller structures that occurs in developed turbulence. She will also by studying the inevitable instabilities that occur in most fluid environments. Such unstable flows break up and may form the trigger for developed turbulence.
虽然所有的“真实的”流体至少是非常弱的粘性,但在许多物理情况下,粘性消失的微妙极限是相关的状态。特别是,开创性的想法Kolmogorov和Onsager关于统计理论的湍流是基于预测的行为的流体范围内的粘度消失。 欧拉方程和Navier-Stokes方程由于其特殊的非线性性质而在数学上非常具有挑战性。本项目解决了流体方程中出现的一些非线性现象,特别是与消失粘度极限有关的现象。所谓的“壳模型”进行了研究:这些都是由一个无限系统的非线性耦合常微分方程,虽然不那么复杂的欧拉和Navier-Stokes方程保留其非线性的某些重要特征。它已被证明在以前的NSF支持的工作,无粘模型的行为,精确的Onsager湍流流体的湍流。在该奖项将支持的项目中,建议证明粘性模型的Kolmogorov“定律”,即粘性系统的平均耗散率保持正值,并在粘性极限消失时收敛于平均湍流耗散率。另一个研究方向是流体运动的不稳定性,以及粘性极限消失时线性和非线性不稳定性之间的相互关系。模拟流体运动的微分方程的数学研究是许多应用的重要基础,如海洋学、气象学、天体物理学和工程学。一个特别重要的问题是湍流流体的行为。根据该奖项,弗里德兰德将使用数学技术来研究在发达湍流中发生的能量级联到越来越小的结构。她还将通过研究在大多数流体环境中发生的不可避免的不稳定性。这种不稳定的流动会破裂,并可能形成发展湍流的触发器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Friedlander其他文献
Non-uniqueness of forced active scalar equations with even drift operators
偶漂移算子的强制主动标量方程的非唯一性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai;Susan Friedlander - 通讯作者:
Susan Friedlander
Screening and Treatment of Tobacco Use Disorder in Mental Health Clinics in New York State: Current Status and Potential Next Steps
纽约州心理健康诊所烟草使用障碍的筛查和治疗:现状和潜在的后续步骤
- DOI:
10.1007/s10597-020-00726-0 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Adria Zern;M. Seserman;Heather L M Dacus;B. Wallace;Susan Friedlander;M. Manseau;Maxine Smalling;Thomas E. Smith;Jill M Williams;M. Compton - 通讯作者:
M. Compton
The mathematical Miller of Nottingham
- DOI:
10.1007/bf03025884 - 发表时间:
2009-01-13 - 期刊:
- 影响因子:0.400
- 作者:
Susan Friedlander;Anton Powell - 通讯作者:
Anton Powell
Susan Friedlander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Friedlander', 18)}}的其他基金
Asymptotic Analysis for Magnetostrophic Turbulence
磁致湍流的渐近分析
- 批准号:
1613135 - 财政年份:2016
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Active Scalar Equations and a Geodynamo Model
主动标量方程和地球发电机模型
- 批准号:
1207780 - 财政年份:2012
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
The fluid equations, shell models and the limit of vanishing viscosity
流体方程、壳模型和消失粘度极限
- 批准号:
0849397 - 财政年份:2008
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Topics related to the dynamics of an ideal fluid.
与理想流体动力学相关的主题。
- 批准号:
0503768 - 财政年份:2005
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Mathematical Sciences: "Mathematical Topics Related to Fluid Instabilities
数学科学:“与流体不稳定性相关的数学主题
- 批准号:
9622563 - 财政年份:1996
- 资助金额:
$ 13.7万 - 项目类别:
Continuing Grant
Topics in Hydrodynamics (Mathematics)
流体动力学主题(数学)
- 批准号:
9353093 - 财政年份:1994
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Mathematical Sciences: U.S. - Russia Cooperative Research Program
数学科学:美国-俄罗斯合作研究计划
- 批准号:
9300752 - 财政年份:1993
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
相似国自然基金
非线性发展方程及其吸引子
- 批准号:10871040
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
大气、海洋科学中偏微分方程和随机动力系统的研究
- 批准号:10801017
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
不可压流体力学方程中的一些问题
- 批准号:10771177
- 批准年份:2007
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
- 批准号:
2306378 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Standard Grant
Using Artificial Intelligence to Solve Complex Flow Equations in a Wet Gas Environment
使用人工智能求解湿气体环境中的复杂流量方程
- 批准号:
10091110 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Collaborative R&D
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 13.7万 - 项目类别:
Research Grant