Mathematical Sciences: "Mathematical Topics Related to Fluid Instabilities
数学科学:“与流体不稳定性相关的数学主题
基本信息
- 批准号:9622563
- 负责人:
- 金额:$ 6.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 1999-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9622563 Friedlander S.Friedlander in collaboration with M.M.Vishik will continue her investigation into mathematical problems that arise in fluid motion. It is proposed to study the spectrum of small oscillations of an ideal fluid about a given steady flow: this leads to the study of the spectrum of a degenerate non-elliptic differential operator. The exact location of the unstable continuous spectrum will be determined purely in terms of dynamical systems quantities. Examples of fluid instability due to the discrete part of the spectrum will be studied analytically and numerically. It was recently proved that,under certain assumptions, linear instability of a steady inviscid flow implies nonlinear (Lyapunov) instability. It is proposed to extend the range of applicability of this result.Another line of research is the study of instabilities for the augmented system of fluid equations that govern magnetohydrodynamics. A sufficient condition for instability has been derived in terms of a system of local PDE. It is proposed to apply this criterion to demonstrate instability of certain astrophysical models. %%% All fluid motions are continually subject to small disturbances ( eg, think of a tank of water in a laboratory that is "disturbed" by a truck driving by outside ). A natural question arises as to whether the the effect of the disturbance dies away leaving the fluid in the same state as before --this is called stable--or the effect of the disturbance is to change the configuration of the fluid--this is called unstable. The question of fluid stability/instability is a classical one that has received much attention in the scientific literature for more than a century.It is fundamental to studies in meteorology, oceanography, geophysics and astrophysics ; in particular, instabilities at the air/sea interface are significant to any study of the global change of the environment. The mathematics of fluid instabilities is governed by a system of partial differ ential equations that are remarkably challenging and interesting. Despite a century of study there are many open mathematical questions connected with these equations. This proposal will continue to address some of these open problems. ***
9622563 Friedlander S.Friedlander将与M.M.Vishik合作,继续她对流体运动中出现的数学问题的研究。提出了研究理想流体关于给定定常流动的小振荡的谱:这导致了对退化的非椭圆微分算子的谱的研究。不稳定连续谱的确切位置将纯粹根据动力系统的量来确定。我们将从解析和数值两方面研究由于光谱的离散部分而导致的流体不稳定的例子。最近的研究证明,在一定的假设条件下,定常无粘流的线性不稳定性意味着非线性(Lyapunov)不稳定性。另一个研究方向是研究控制磁流体力学的增广流体方程组的不稳定性。利用局部偏微分方程组,给出了系统不稳定的充分条件。有人建议用这个判据来证明某些天体物理模型的不稳定性。所有流体的运动都会不断地受到微小的干扰(例如,想象一下实验室里的一个水箱被外面开过的卡车“干扰”了)。一个自然的问题是,扰动的影响是否消失了,使流体保持与以前相同的状态,这称为稳定,或者扰动的影响改变了流体的构型,这称为不稳定。一个多世纪以来,流体稳定性/不稳定性问题一直是科学文献中备受关注的经典问题,它是气象学、海洋学、地球物理学和天体物理学研究的基础,尤其是海/气界面的不稳定性对任何全球环境变化的研究都具有重要意义。流体不稳定性的数学是由一个偏微分方程组控制的,这些偏微分方程组非常具有挑战性和趣味性。尽管进行了一个世纪的研究,但仍有许多与这些方程有关的数学问题。该提案将继续解决其中一些悬而未决的问题。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Friedlander其他文献
Non-uniqueness of forced active scalar equations with even drift operators
偶漂移算子的强制主动标量方程的非唯一性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mimi Dai;Susan Friedlander - 通讯作者:
Susan Friedlander
Screening and Treatment of Tobacco Use Disorder in Mental Health Clinics in New York State: Current Status and Potential Next Steps
纽约州心理健康诊所烟草使用障碍的筛查和治疗:现状和潜在的后续步骤
- DOI:
10.1007/s10597-020-00726-0 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
Adria Zern;M. Seserman;Heather L M Dacus;B. Wallace;Susan Friedlander;M. Manseau;Maxine Smalling;Thomas E. Smith;Jill M Williams;M. Compton - 通讯作者:
M. Compton
The mathematical Miller of Nottingham
- DOI:
10.1007/bf03025884 - 发表时间:
2009-01-13 - 期刊:
- 影响因子:0.400
- 作者:
Susan Friedlander;Anton Powell - 通讯作者:
Anton Powell
Susan Friedlander的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Friedlander', 18)}}的其他基金
Asymptotic Analysis for Magnetostrophic Turbulence
磁致湍流的渐近分析
- 批准号:
1613135 - 财政年份:2016
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Active Scalar Equations and a Geodynamo Model
主动标量方程和地球发电机模型
- 批准号:
1207780 - 财政年份:2012
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
The fluid equations, shell models and the limit of vanishing viscosity
流体方程、壳模型和消失粘度极限
- 批准号:
0849397 - 财政年份:2008
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
The fluid equations, shell models and the limit of vanishing viscosity
流体方程、壳模型和消失粘度极限
- 批准号:
0803268 - 财政年份:2008
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Topics related to the dynamics of an ideal fluid.
与理想流体动力学相关的主题。
- 批准号:
0503768 - 财政年份:2005
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Topics in Hydrodynamics (Mathematics)
流体动力学主题(数学)
- 批准号:
9353093 - 财政年份:1994
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Mathematical Sciences: U.S. - Russia Cooperative Research Program
数学科学:美国-俄罗斯合作研究计划
- 批准号:
9300752 - 财政年份:1993
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences aiming at medical application of light propagation in biomedical tissues and related topics
针对生物医学组织中光传播的医学应用的数学科学及相关主题
- 批准号:
16H02155 - 财政年份:2016
- 资助金额:
$ 6.61万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
- 批准号:
0628079 - 财政年份:2007
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -Generalized Linear Mixed Models and Related Topics - June 8-12,1999
NSF/CBMS 数学科学区域会议 - 广义线性混合模型及相关主题 - 1999 年 6 月 8 日至 12 日
- 批准号:
9813374 - 财政年份:1999
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Mathematical Sciences: Symbolic Dynamics and Related Topics
数学科学:符号动力学及相关主题
- 批准号:
9706852 - 财政年份:1997
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
- 批准号:
9622735 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Topics in Combustion
数学科学:燃烧中的数学主题
- 批准号:
9600103 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Model Theory
数学科学:模型论主题
- 批准号:
9696268 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
9625782 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Continuing grant
Mathematical Sciences: Topics in Commutative Algebra
数学科学:交换代数主题
- 批准号:
9622224 - 财政年份:1996
- 资助金额:
$ 6.61万 - 项目类别:
Standard Grant