Collaborative Research: Scalable Bayesian Methods for Complex Data with Optimality Guarantees

协作研究:具有最优性保证的复杂数据的可扩展贝叶斯方法

基本信息

  • 批准号:
    1613193
  • 负责人:
  • 金额:
    $ 13.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

Spectacular advances in data acquisition, processing, and storage present the opportunity to analyze datasets of ever-increasing size and complexity in various applications, such as social and biological networks, epidemiology, genomics, and Internet recommender systems. Underlying the massive size and dimension of these data, there is often a parsimonious structure. The Bayesian approach to statistical inference is attractive in this context in terms of incorporating structural assumptions through prior distributions, enabling probabilistic modeling of complex phenomenon, and providing an automatic characterization of uncertainty. This research project aims to advance eliciting and translating prior knowledge regarding the low-dimensional skeleton of big data to provide realistic uncertainty characterizations while maintaining computational efficiency. Bayesian computation poses substantial challenge in high-dimensional and big data problems. The research aims to develop cutting-edge computational strategies and software packages for implementation to be made available publicly. The project involves graduate students in the research.The research project focuses on theoretical foundations and computational strategies for Bayesian methods in high-dimensional and big data problems motivated by applications in social networks and epidemiology. Techniques for systematically developing and evaluating prior distributions in high-dimensional problems will be investigated with a special emphasis on the trade-off between statistical efficiency and computational scalability. Specific directions include efficient algorithms for posterior sampling with shrinkage priors, a theoretical framework for divide and conquer strategies in big data problems, fast algorithms for clustering nodes in large networks with unknown number of communities, and methods for discovering structure in sparse contingency tables. The algorithms will be motivated by rigorous theoretical understanding of the behavior of the posterior distribution with a particular emphasis on proper quantification of uncertainty in a distributed computing framework. Software will be developed for each application.
数据采集、处理和存储方面的惊人进步为分析各种应用中不断增加的大小和复杂性的数据集提供了机会,例如社会和生物网络、流行病学、基因组学和互联网推荐系统。在这些数据的巨大规模和维度之下,往往存在一种简约的结构。贝叶斯方法的统计推断是有吸引力的,在这种情况下,通过先验分布的结构假设,使复杂现象的概率建模,并提供了一个自动表征的不确定性。该研究项目旨在推进关于大数据低维骨架的先验知识的提取和翻译,以提供现实的不确定性特征,同时保持计算效率。贝叶斯计算在高维和大数据问题中提出了实质性的挑战。该研究旨在开发尖端的计算策略和软件包,以供公众使用。本项目由研究生参与,研究方向是基于社交网络和流行病学应用的高维大数据问题中贝叶斯方法的理论基础和计算策略。系统地开发和评估先验分布在高维问题的技术将进行调查,特别强调统计效率和计算的可扩展性之间的权衡。具体方向包括收缩先验后采样的有效算法,大数据问题中分治策略的理论框架,在社区数量未知的大型网络中聚类节点的快速算法,以及在稀疏列联表中发现结构的方法。这些算法将受到严格的后验分布的行为的理论理解,特别强调在分布式计算框架中的不确定性的适当量化。将为每个应用程序开发软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anirban Bhattacharya其他文献

Investigation of thermal-hydraulic performance of circular, elliptical & mixed circular-elliptical tube bundles for two-phase cross-flow boiling
  • DOI:
    10.1016/j.ijheatmasstransfer.2024.125970
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Subhakanta Moharana;Abhijeet Joshi;Anirban Bhattacharya;Mihir Kumar Das
  • 通讯作者:
    Mihir Kumar Das
Model for particle capture by the solid-liquid interface during solidification of metal matrix nanocomposites
  • DOI:
    10.1016/j.tsep.2023.102109
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    M. Jegatheesan;Anirban Bhattacharya
  • 通讯作者:
    Anirban Bhattacharya
Comment on Article by Dawid and Musio
对 Dawid 和 Musio 文章的评论
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Katzfuss;Anirban Bhattacharya
  • 通讯作者:
    Anirban Bhattacharya
High-dimensional Bernstein-von Mises theorem for the Diaconis-Ylvisaker prior
Diaconis-Ylvisaker 先验的高维 Bernstein-von Mises 定理
Optimization of surface roughness in an end-milling operation using nested experimental design

Anirban Bhattacharya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anirban Bhattacharya', 18)}}的其他基金

Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
  • 批准号:
    2210689
  • 财政年份:
    2022
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
CAREER: Bayesian Generalized Shrinkage: An Encompassing Model Approach
职业:贝叶斯广义收缩:一种包罗万象的模型方法
  • 批准号:
    1653404
  • 财政年份:
    2017
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231261
  • 财政年份:
    2023
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 13.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了