Constructive Approximation and Harmonic Analysis
构造近似和调和分析
基本信息
- 批准号:1613790
- 负责人:
- 金额:$ 2.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2018-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides funding to defray expenses of US-based participants (both young researchers and established scientists) in the intensive research program "Constructive Approximation and Harmonic Analysis", which is to be held at the Centre de Recerca Matematica (CRM) in Barcelona, Spain during the period of March-July, 2016. This program will concentrate on the areas of harmonic analysis and approximation theory, areas of mathematics that underlie the representation and approximation of functions and data. The emphasis will be put on constructive high-dimensional methods of approximation and representation. Recently, driven by applications in engineering, biology, medicine, and other areas of science, new challenging problems have appeared. A common feature of many of these problems is that they involve data and multivariable functions in extremely high dimensions, in which setting classical methods of approximation do not work well. This is an important and rapidly developing area of mathematics. A recent increase of activity at the interface of harmonic analysis and approximation theory makes the timing perfect for a research program that emphasizes this interplay and will help the cross fertilization of both fields. CRM is a renowned mathematics research institute which provides excellent facilities for such a program, and both harmonic analysis and approximation theory have historically been strongly represented in the activities of CRM.The program will include a workshop on "Function Spaces and High-Dimensional Approximation" (May 2016), several advanced courses on "Methods of Constructive Approximation and Harmonic Analysis" aimed at graduate students and postdocs (May-June 2016), and a Conference on "Harmonic Analysis and Approximation Theory" (HAAT 2016, June 2016). In addition there will be ample time for collaborative research. The program will bring together different groups of mathematicians working in several areas of analysis and numerical analysis to try to make a breakthrough in high-dimensional problems, which are very important in data compression and processing (critical to information technology applications and medical imaging). Progress in this area will impact several other mathematical sciences communities, including signal and image processing, numerical mathematics, learning theory, and optimization theory. The schedule of the events in the program has been carefully coordinated with other European and US events in these fields, which will allow a large number of US-based mathematicians to participate. The web site for the conference is http://www.crm.cat/en/Activities/Curs_2015-2016/Pages/IRP-Approximation-and-Harmonic-Analysis.aspx
该奖项提供资金,以支付美国参与者(包括年轻研究人员和知名科学家)在密集的研究计划“建设性近似和谐波分析”中的费用,该计划将于2016年3月至7月期间在西班牙巴塞罗那的Centre de Recerca Matematica(CRM)举行。 该计划将集中在谐波分析和近似理论,数学领域的基础上的表示和函数和数据的近似领域。 重点将放在建设性的高维近似和表示方法。 近年来,在工程、生物、医学和其他科学领域的应用的推动下,出现了新的挑战性问题。 许多这些问题的一个共同特点是,它们涉及数据和多变量函数在极高的维度,其中设置经典的近似方法不工作。 这是数学中一个重要而迅速发展的领域。 最近在调和分析和近似理论的接口活动的增加,使得时间完美的研究计划,强调这种相互作用,并将有助于这两个领域的交叉施肥。 CRM是一个著名的数学研究机构,为这样一个计划提供了良好的设施,调和分析和逼近理论在CRM的活动中一直很有代表性。该计划将包括一个关于“函数空间和高维逼近”的工作坊。(2016年5月),几门针对研究生和博士后的“构造性近似和调和分析方法”高级课程(2016年5月至6月),以及关于“谐波分析和近似理论”的会议(HAAT 2016,2016年6月)。 此外,将有足够的时间进行合作研究。 该计划将汇集在分析和数值分析的几个领域工作的不同数学家群体,试图在高维问题上取得突破,这在数据压缩和处理中非常重要(对信息技术应用和医学成像至关重要)。 这一领域的进展将影响其他几个数学科学社区,包括信号和图像处理,数值数学,学习理论和优化理论。 该计划中的活动时间表已与这些领域的其他欧洲和美国活动进行了精心协调,这将使大量美国数学家参加。 会议的网址是http://www.crm.cat/en/Activities/Curs_2015-2016/Pages/IRP-Approximation-and-Harmonic-Analysis.aspx
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Temlyakov其他文献
Weight-Almost Greedy Bases
- DOI:
10.1134/s0081543818080102 - 发表时间:
2019-03-05 - 期刊:
- 影响因子:0.400
- 作者:
S. J. Dilworth;Denka Kutzarova;Vladimir Temlyakov;Ben Wallis - 通讯作者:
Ben Wallis
Greedy Algorithms with Prescribed Coefficients
- DOI:
10.1007/s00041-006-6033-x - 发表时间:
2007-02-08 - 期刊:
- 影响因子:1.200
- 作者:
Vladimir Temlyakov - 通讯作者:
Vladimir Temlyakov
Vladimir Temlyakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Temlyakov', 18)}}的其他基金
Greedy Approximation in Banach Spaces and Compressed Sensing
Banach 空间中的贪婪逼近和压缩感知
- 批准号:
1160841 - 财政年份:2012
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Application of Greedy Approximations in Numerical Integration and Learning Theory
贪心近似在数值积分和学习理论中的应用
- 批准号:
0906260 - 财政年份:2009
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Multivariate Approximation
数学科学:多元逼近
- 批准号:
9622925 - 财政年份:1996
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
相似海外基金
Nonlinear Approximation in Geometric, Harmonic, and Anisotropic Settings with Applications
几何、谐波和各向异性设置中的非线性近似及其应用
- 批准号:
1714369 - 财政年份:2017
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Development of time-independent eigenstate-free methods for calculating vibronic spectra beyond the harmonic approximation
开发与时间无关的无本征态方法,用于计算超出谐波近似的电子振动谱
- 批准号:
318589760 - 财政年份:2016
- 资助金额:
$ 2.63万 - 项目类别:
Research Grants
Harmonic measures in approximation and orthogonal polynomials
近似和正交多项式中的谐波测量
- 批准号:
1265375 - 财政年份:2013
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Computational harmonic analysis - approximation of function
计算调和分析 - 函数逼近
- 批准号:
24540184 - 财政年份:2012
- 资助金额:
$ 2.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational harmonic analysis, new development of approximation
计算调和分析,近似法的新发展
- 批准号:
20540183 - 财政年份:2008
- 资助金额:
$ 2.63万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic measures, polynomial inequalities, orthogonal polynomials and approximation
调和测量、多项式不等式、正交多项式和近似
- 批准号:
0700471 - 财政年份:2007
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Harmonic measures, potentials, approximation and polynomials inequalities on general sets
一般集上的调和测度、势、近似和多项式不等式
- 批准号:
0097484 - 财政年份:2001
- 资助金额:
$ 2.63万 - 项目类别:
Standard Grant
Approximation: holomorphic and harmonic
近似:全纯和调和
- 批准号:
5597-1997 - 财政年份:2001
- 资助金额:
$ 2.63万 - 项目类别:
Discovery Grants Program - Individual
Approximation: holomorphic and harmonic
近似:全纯和调和
- 批准号:
5597-1997 - 财政年份:2000
- 资助金额:
$ 2.63万 - 项目类别:
Discovery Grants Program - Individual
Approximation: holomorphic and harmonic
近似:全纯和调和
- 批准号:
5597-1997 - 财政年份:1999
- 资助金额:
$ 2.63万 - 项目类别:
Discovery Grants Program - Individual