Mathematical Sciences: Multivariate Approximation
数学科学:多元逼近
基本信息
- 批准号:9622925
- 负责人:
- 金额:$ 6.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-05-15 至 1999-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACT Proposal: DMS-962292 PI: Temlyakov Approximation theory is a rapidly changing area of mathematics. The core problem of approximation continues to be the development of efficient methods for replacing general functions by simpler functions. Some methods were invented long ago (methods based on Fourier sums, Taylor polynomials, best approximations by trigonometric or algebraic polynomials, etc.). More recently however, driven by several numerical applications, the directions of approximation theory have moved toward nonlinear and multivariate approximation. This includes the comparatively new subject of nonlinear m- term approximation, wavelets, approximation by ridge functions, bilinear approximation, etc. These have found applications in numerical integration, numerical solution of integral equations, image compression, design of neural networks, and so on. The purpose of this proposed research is to continue the investigations of several areas of multivariate approximation. Emphasis will be placed on nonlinear methods of approximation such as best m-term approximation, metric entropy, and bilinear, as well as their interaction with other fields of mathematics and applications. Keeping in mind the applications of nonlinear approximation in numerical analysis, Temlyakov will study some nonlinear algorithms of approximation, for instance, "greedy" algorithms. Approximation theory seeks ways to replace complicated object by simpler objects. This idea has proved to be fruitful in many applications to the real world problems. Among these applications are signal processing, image compression, analysis of contaminant flow, finance problems (for instance collateralized mortgage obligation), and many other. As one of the model problems, consider image compression. Take for example an image (picture) on a TV screen. Why should we approximate it? In many cases we cannot afford to transmit (or store in a computer memory) the whole information of an image, perhaps because of a high cost for transmission of a bit of information or limited channel capacity. This is exactly the point where an application of approximation theory can be fruitful. Clearly, when we replace an image by its approximant we lose the quality of picture: the more information we keep the better approximation to the original image we have. As a result we have an interplay between the reduction of information and the quality of approximation. We try to find the best (optimal) solution to this problem. The purpose of the proposed research is to continue the investigations of methods of approximation of multivariate functions which are motivated by these types of types of applications.
提要建议:DMS-962292 PI:Temlyakov逼近理论是一个快速变化的数学领域。逼近的核心问题仍然是用更简单的函数代替一般函数的有效方法的发展。一些方法很久以前就发明了(基于傅立叶和、泰勒多项式、三角或代数多项式的最佳逼近等方法)。然而,最近,在一些数值应用的推动下,逼近理论的方向已经转向非线性和多元逼近。这包括非线性m项逼近、小波、岭函数逼近、双线性逼近等较新的课题,它们在数值积分、积分方程组的数值求解、图像压缩、神经网络设计等方面都有应用。这项拟议的研究的目的是继续研究多元逼近的几个领域。重点将放在非线性逼近方法,如最佳m项逼近、度量熵和双线性,以及它们与其他数学和应用领域的相互作用。考虑到非线性逼近在数值分析中的应用,特米利亚科夫将研究一些非线性逼近算法,例如“贪婪”算法。近似理论寻求用更简单的物体代替复杂物体的方法。这一想法在许多现实世界问题的应用中被证明是卓有成效的。这些应用包括信号处理、图像压缩、污染物流动分析、金融问题(例如抵押抵押债券)和许多其他应用。作为模型问题之一,考虑图像压缩。以电视屏幕上的一个图像(图片)为例。为什么我们要近似它呢?在许多情况下,我们无法传输(或存储在计算机存储器中)一幅图像的全部信息,这可能是因为传输少量信息的成本很高或通道容量有限。这正是应用近似理论可以取得丰硕成果的地方。显然,当我们用图像的近似值替换图像时,我们就会失去图像的质量:我们保留的信息越多,就越能更好地逼近原始图像。结果,我们在信息的减少和近似的质量之间产生了相互作用。我们试图找到这个问题的最佳(最佳)解决方案。本研究的目的是继续研究受这类应用所驱动的多元函数的逼近方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Temlyakov其他文献
Weight-Almost Greedy Bases
- DOI:
10.1134/s0081543818080102 - 发表时间:
2019-03-05 - 期刊:
- 影响因子:0.400
- 作者:
S. J. Dilworth;Denka Kutzarova;Vladimir Temlyakov;Ben Wallis - 通讯作者:
Ben Wallis
Greedy Algorithms with Prescribed Coefficients
- DOI:
10.1007/s00041-006-6033-x - 发表时间:
2007-02-08 - 期刊:
- 影响因子:1.200
- 作者:
Vladimir Temlyakov - 通讯作者:
Vladimir Temlyakov
Vladimir Temlyakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Temlyakov', 18)}}的其他基金
Constructive Approximation and Harmonic Analysis
构造近似和调和分析
- 批准号:
1613790 - 财政年份:2016
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
Greedy Approximation in Banach Spaces and Compressed Sensing
Banach 空间中的贪婪逼近和压缩感知
- 批准号:
1160841 - 财政年份:2012
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
Application of Greedy Approximations in Numerical Integration and Learning Theory
贪心近似在数值积分和学习理论中的应用
- 批准号:
0906260 - 财政年份:2009
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9625511 - 财政年份:1996
- 资助金额:
$ 6.47万 - 项目类别:
Continuing grant
Mathematical Sciences: Models and Structures of Multivariate Distribution
数学科学:多元分布的模型和结构
- 批准号:
9626339 - 财政年份:1996
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
University-Industry Cooperative Research Programs in Mathematical Sciences: Outlier and Cluster Idenitification for Multivariate Process Data
数学科学产学合作研究项目:多元过程数据的异常值和聚类识别
- 批准号:
9626843 - 财政年份:1996
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Confidence Regions in Multivariate Calibration
数学科学:多元校准中的置信区域
- 批准号:
9530932 - 财政年份:1996
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Multivariate Approximation
数学科学:多元逼近
- 批准号:
9626319 - 财政年份:1996
- 资助金额:
$ 6.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Theory and Methods for Errors in Variables Regression and other Multivariate Inference Problems
数学科学:变量回归和其他多元推理问题中误差的统计理论和方法
- 批准号:
9504924 - 财政年份:1995
- 资助金额:
$ 6.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Multivariate Survival Analysis and Counting Processes
数学科学:多元生存分析和计数过程主题
- 批准号:
9504507 - 财政年份:1995
- 资助金额:
$ 6.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Multivariate Analysis, Rank Data andMultivariate Ranks
数学科学:多元分析、排名数据和多元排名
- 批准号:
9504525 - 财政年份:1995
- 资助金额:
$ 6.47万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Methods in Multivariate Statistical Analysis
数学科学:多元统计分析中的代数方法
- 批准号:
9402714 - 财政年份:1994
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant
Mathematical Sciences: Modeling & Statistical Analysis of Multivariate, Rank, & Mental Test Data, with Social Science Applications
数学科学:建模
- 批准号:
9404327 - 财政年份:1994
- 资助金额:
$ 6.47万 - 项目类别:
Standard Grant