Harmonic measures, potentials, approximation and polynomials inequalities on general sets
一般集上的调和测度、势、近似和多项式不等式
基本信息
- 批准号:0097484
- 负责人:
- 金额:$ 6.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research will be done in connection with metric properties of harmonic measures on infinitely connected domains, in connection with polynomial inequalities and orthogonal polynomials. The estimates for harmonic measures/Green functionswill be given via a local integral involving a density function associated withthe boundary of the domain. Such results directly lead to estimates for polynomials in the complex plane and to extensions of some classical polynomial inequalities for general compact sets. The results, in particular, will allow to find the order of the Markoff factors for Cantor-type sets, which in turnwill produce compact sets of zero measure for which the Markoff factors are of the minimal growth order O(n^2). Weighted polynomial inequalitieswith respect to general (say doubling) weights will also be studied together with applications in connection with approximation theory and orthogonal polynomials.Another part of the research is polynomial approximation and orthogonalpolynomials with varying weights (the weight varies with the degree), whichwill be studied with the help of logarithmic potentials in thepresence of an external field. The approximation problem is fundamentalin proving appropriate asymptotics for Christoffel functionsand orthogonal polynomials with varying weights, that inturn can be used to test the universality hypothesis in statistical-mechanical models of quantum physics. The proposed research uses different tools from classical analysis, but the main method is potential thoretic.Research will be done in mathematical analysis. The main effort will be to find new ways to estimate some classical quantities and to extend some well known results to more general situations. These will allow wider applicabilityof several classical tools and will provide some new insights into the theoretical aspects of some fundamental questions in approximation theoryand orthogonal polynomials.
我们将研究无穷连通区域上调和测度的度量性质,以及多项式不等式和正交多项式。调和度量/格林函数的估计将通过涉及与区域边界相关的密度函数的局部积分来给出。这些结果直接给出了复平面上多项式的估计,并推广了一般紧集上的一些经典多项式不等式。特别是,这些结果将允许找到Cantor型集的Markoff因子的阶,这反过来将产生零测度的紧致集,其Markoff因子是O(n^2)的最小增长阶。关于一般(例如倍增)权的加权多项式不等式也将与逼近理论和正交多项式的应用一起研究。研究的另一部分是多项式逼近和具有变权(权随次数变化)的正交多项式,它们将在外场存在的情况下借助于对数势来研究。近似问题是证明Christoffel函数和具有变权的正交多项式的适当渐近性的基础,而这反过来又可以用来检验量子物理统计力学模型中的普适性假设。这项研究使用了与经典分析不同的工具,但主要方法是势能理论。研究将在数学分析中进行。主要的努力将是找到新的方法来估计一些经典的量,并将一些众所周知的结果推广到更一般的情况。这将使几个经典工具具有更广泛的适用性,并将为逼近理论和正交多项式中的一些基本问题的理论方面提供一些新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vilmos Totik其他文献
Bernstein-type inequalities
- DOI:
10.1016/j.jat.2012.03.002 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:
- 作者:
Vilmos Totik - 通讯作者:
Vilmos Totik
The size of irregular points for a measure
- DOI:
10.1007/s10474-011-0177-0 - 发表时间:
2011-11-29 - 期刊:
- 影响因子:0.600
- 作者:
Vilmos Totik - 通讯作者:
Vilmos Totik
Weighted polynomial inequalities
- DOI:
10.1007/bf01893420 - 发表时间:
1986-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Paul Nevai;Vilmos Totik - 通讯作者:
Vilmos Totik
Remarks on a functional equation
关于一个函数方程的注记
- DOI:
10.14232/actasm-015-805-1 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Zoltán Daróczy;Vilmos Totik - 通讯作者:
Vilmos Totik
Smooth equilibrium measures and approximation
- DOI:
10.1016/j.aim.2006.11.001 - 发表时间:
2007-07-10 - 期刊:
- 影响因子:
- 作者:
Vilmos Totik;Péter P. Varjú - 通讯作者:
Péter P. Varjú
Vilmos Totik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vilmos Totik', 18)}}的其他基金
Polynomial Inequalities and Applications
多项式不等式及其应用
- 批准号:
1564541 - 财政年份:2016
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Harmonic measures in approximation and orthogonal polynomials
近似和正交多项式中的谐波测量
- 批准号:
1265375 - 财政年份:2013
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Christoffel functions and applications
Christoffel 的功能和应用
- 批准号:
0968530 - 财政年份:2010
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Harmonic measures, polynomial inequalities, orthogonal polynomials and approximation
调和测量、多项式不等式、正交多项式和近似
- 批准号:
0700471 - 财政年份:2007
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Smoothness Properties of Harmonic Measures and the Polynomial Inverse Image Method
谐波测度的平滑特性和多项式逆像法
- 批准号:
0406450 - 财政年份:2004
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Potentials, Polynomials and Weighted Polynomial Inequalities
势、多项式和加权多项式不等式
- 批准号:
9801435 - 财政年份:1998
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Approximation Theory and Potentials
数学科学:近似理论和势
- 批准号:
9415657 - 财政年份:1995
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Potential Theoretical Methods in Approximation Theory
数学科学:近似论中潜在的理论方法
- 批准号:
9101380 - 财政年份:1991
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
Mathematical Sciences: Special Functions and Orthogonal Expansions with Applications to Nonlinear Dynamics and Quantum Mechanics/Orthogonal Expansions and Potential Theory
数学科学:特殊函数和正交展开及其在非线性动力学和量子力学中的应用/正交展开和势论
- 批准号:
9002794 - 财政年份:1990
- 资助金额:
$ 6.75万 - 项目类别:
Standard Grant
相似国自然基金
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Electrophysiologic characterization of circadian rhythms of prefrontal cortical network states in a diurnal rodent
昼夜啮齿动物前额皮质网络状态昼夜节律的电生理学特征
- 批准号:
10556475 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Study of NEXMIF mosaic expression on neuronal development and connectivity in female mice
NEXMIF 镶嵌表达对雌性小鼠神经元发育和连接的影响研究
- 批准号:
10642436 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Characterizing the functional heterogeneity of the mouse paralaminar nucleus
表征小鼠板旁核的功能异质性
- 批准号:
10678525 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Comparison of direct and indirect magnetic resonance imaging of myelin in Alzheimer's disease
阿尔茨海默病髓磷脂直接和间接磁共振成像的比较
- 批准号:
10680319 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Operant conditioning of sensory evoked potentials to reduce phantom limb pain
感觉诱发电位的操作性条件反射可减少幻肢痛
- 批准号:
10703170 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Behavioral and physiological measurements of hearing in mouse models of Alzheimer's Disease
阿尔茨海默病小鼠模型听力的行为和生理测量
- 批准号:
10647340 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别:
Mechanisms of Neural Synchrony in the Medial Entorhinal Cortex
内侧内嗅皮层神经同步机制
- 批准号:
10751561 - 财政年份:2023
- 资助金额:
$ 6.75万 - 项目类别: