Harmonic measures, polynomial inequalities, orthogonal polynomials and approximation

调和测量、多项式不等式、正交多项式和近似

基本信息

  • 批准号:
    0700471
  • 负责人:
  • 金额:
    $ 8.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

This is a program in classical mathematical analysis, in particular in potential theory, approximation theory and orthogonal polynomials. Some of the questions to be considered are fundamental in classical harmonic analysis, since they deal with smoothness properties of Green's functions and harmonic measures, which are basic objects both in the theory and its applications. The main problem is how smoothness of harmonic measures around boundary points is related to the geometry of the underlying domain. The answer to this problem is directly linked to problems in approximation theory, polynomial inequalities and estimates on orthogonal polynomials. The other direction of research is non-classical orthogonal polynomials, for which many questions are motivated by applications, and for which classical tools are not available. In particular, Dr. Totik will study orthogonal polynomials with respect to doubling measures which will open a new direction of research that seems to be the right one when the classical theory (as well as the related interpolation theory) is extended to more general classes. The results will have direct applications to interpolation, quadrature, numerical analysis and integral equations, and so are also relevant to physics and engineering.Harmonic analysis is a fundamental tool in many branches of science and engineering like signal processing, medical imaging, airplane design, pattern recognition, data compression etc. Approximation theory provides means to simplify theoretical models via replacing complicated functions/objects by simpler ones. The theory of orthogonal polynomials is extremely rich with applications in a vast array of problems like spectral theory, numerical analysis, electrostatics, statistical quantum mechanics, random matrices, birth and death processes, prediction theory, Radon transform and computer tomography, etc. The research will enhance our understanding of some areas of these field, as well as their interaction.
这是一个经典数学分析的程序,特别是势理论,近似理论和正交多项式。一些要考虑的问题是经典调和分析中的基本问题,因为它们涉及格林函数和调和测度的平滑性,这是理论和应用的基本对象。主要问题是边界点周围谐波测度的平滑度如何与底层域的几何形状相关。这个问题的答案与近似理论、多项式不等式和正交多项式估计中的问题直接相关。另一个研究方向是非经典正交多项式,它的许多问题是由应用驱动的,并且经典工具不可用。特别是,Totik博士将研究正交多项式的加倍措施,这将开辟一个新的研究方向,似乎是一个正确的,当经典理论(以及相关的插值理论)扩展到更一般的类。其结果将直接应用于插值、正交、数值分析和积分方程,因此也与物理和工程有关。谐波分析是信号处理、医学成像、飞机设计、模式识别、数据压缩等许多科学和工程领域的基本工具。近似理论提供了通过用更简单的函数/对象代替复杂的函数/对象来简化理论模型的方法。正交多项式理论在光谱理论、数值分析、静电学、统计量子力学、随机矩阵、生死过程、预测理论、氡变换和计算机断层扫描等领域有着极其丰富的应用。该研究将加深我们对这些领域的某些领域以及它们之间的相互作用的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vilmos Totik其他文献

Bernstein-type inequalities
  • DOI:
    10.1016/j.jat.2012.03.002
  • 发表时间:
    2012-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vilmos Totik
  • 通讯作者:
    Vilmos Totik
The size of irregular points for a measure
  • DOI:
    10.1007/s10474-011-0177-0
  • 发表时间:
    2011-11-29
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Weighted polynomial inequalities
  • DOI:
    10.1007/bf01893420
  • 发表时间:
    1986-12-01
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Paul Nevai;Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Remarks on a functional equation
关于一个函数方程的注记
  • DOI:
    10.14232/actasm-015-805-1
  • 发表时间:
    2015-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Zoltán Daróczy;Vilmos Totik
  • 通讯作者:
    Vilmos Totik
Smooth equilibrium measures and approximation
  • DOI:
    10.1016/j.aim.2006.11.001
  • 发表时间:
    2007-07-10
  • 期刊:
  • 影响因子:
  • 作者:
    Vilmos Totik;Péter P. Varjú
  • 通讯作者:
    Péter P. Varjú

Vilmos Totik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vilmos Totik', 18)}}的其他基金

Polynomial Inequalities and Applications
多项式不等式及其应用
  • 批准号:
    1564541
  • 财政年份:
    2016
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Harmonic measures in approximation and orthogonal polynomials
近似和正交多项式中的谐波测量
  • 批准号:
    1265375
  • 财政年份:
    2013
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Christoffel functions and applications
Christoffel 的功能和应用
  • 批准号:
    0968530
  • 财政年份:
    2010
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Smoothness Properties of Harmonic Measures and the Polynomial Inverse Image Method
谐波测度的平滑特性和多项式逆像法
  • 批准号:
    0406450
  • 财政年份:
    2004
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Harmonic measures, potentials, approximation and polynomials inequalities on general sets
一般集上的调和测度、势、近似和多项式不等式
  • 批准号:
    0097484
  • 财政年份:
    2001
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Potentials, Polynomials and Weighted Polynomial Inequalities
势、多项式和加权多项式不等式
  • 批准号:
    9801435
  • 财政年份:
    1998
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Approximation Theory and Potentials
数学科学:近似理论和势
  • 批准号:
    9415657
  • 财政年份:
    1995
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Potential Theoretical Methods in Approximation Theory
数学科学:近似论中潜在的理论方法
  • 批准号:
    9101380
  • 财政年份:
    1991
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Special Functions and Orthogonal Expansions with Applications to Nonlinear Dynamics and Quantum Mechanics/Orthogonal Expansions and Potential Theory
数学科学:特殊函数和正交展开及其在非线性动力学和量子力学中的应用/正交展开和势论
  • 批准号:
    9002794
  • 财政年份:
    1990
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant

相似国自然基金

微分动力系统的测度和熵
  • 批准号:
    11101447
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A novel instrument for continuous blood pressure monitoring
一种新型连续血压监测仪器
  • 批准号:
    10696510
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
Predictors of Pain Severity and Pain-Related Outcomes in Individuals with Sickle Cell Disease
镰状细胞病患者疼痛严重程度和疼痛相关结果的预测因子
  • 批准号:
    10721630
  • 财政年份:
    2023
  • 资助金额:
    $ 8.45万
  • 项目类别:
Differences in Labor Progress, Care Received During Labor, and Provider-Patient Communication and Decision-Making Quality among Low-Risk Black vs. White Nulliparous Women with Spontaneous Labor Onset
自然分娩的低风险黑人与白人初产妇女在分娩进展、分娩期间接受的护理以及医患沟通和决策质量方面的差异
  • 批准号:
    10391517
  • 财政年份:
    2021
  • 资助金额:
    $ 8.45万
  • 项目类别:
Differences in Labor Progress, Care Received During Labor, and Provider-Patient Communication and Decision-Making Quality among Low-Risk Black vs. White Nulliparous Women with Spontaneous Labor Onset
自然分娩的低风险黑人与白人初产妇女在分娩进展、分娩期间接受的护理以及医患沟通和决策质量方面的差异
  • 批准号:
    10218513
  • 财政年份:
    2021
  • 资助金额:
    $ 8.45万
  • 项目类别:
A New Approach for Measurement of Electrical Conductivities of Cardiac Tissues
测量心脏组织电导率的新方法
  • 批准号:
    10162414
  • 财政年份:
    2020
  • 资助金额:
    $ 8.45万
  • 项目类别:
MRI based phosphocreatine mapping method to assess patients with peripheral arterial disease.
基于 MRI 的磷酸肌酸绘图方法评估外周动脉疾病患者。
  • 批准号:
    10469525
  • 财政年份:
    2020
  • 资助金额:
    $ 8.45万
  • 项目类别:
MRI based phosphocreatine mapping method to assess patients with peripheral arterial disease.
基于 MRI 的磷酸肌酸绘图方法评估外周动脉疾病患者。
  • 批准号:
    10221043
  • 财政年份:
    2020
  • 资助金额:
    $ 8.45万
  • 项目类别:
MRI based phosphocreatine mapping method to assess patients with peripheral arterial disease.
基于 MRI 的磷酸肌酸绘图方法评估外周动脉疾病患者。
  • 批准号:
    10677775
  • 财政年份:
    2020
  • 资助金额:
    $ 8.45万
  • 项目类别:
Impact of preconception and onward exposure to air pollution on growth trajectories of infants and children (R01)
怀孕前和以后接触空气污染对婴儿和儿童生长轨迹的影响(R01)
  • 批准号:
    10159920
  • 财政年份:
    2019
  • 资助金额:
    $ 8.45万
  • 项目类别:
Impact of preconception and onward exposure to air pollution on growth trajectories of infants and children (R01)
怀孕前和以后接触空气污染对婴儿和儿童生长轨迹的影响(R01)
  • 批准号:
    9817079
  • 财政年份:
    2019
  • 资助金额:
    $ 8.45万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了