Regularity Problem on Two Models from Fluid Dynamics
流体动力学两个模型的正则性问题
基本信息
- 批准号:1614246
- 负责人:
- 金额:$ 20.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
WuDMS-1614246 The investigator studies two well-known partial differential equations modeling geophysical fluids: the surface quasi-geostrophic equation and the magneto-hydrodynamic equation. Partial differential equations are fundamental tools in understanding many fluid phenomena, and they have played pivotal roles in many practical applications. The surface quasi-geostrophic equation models large-scale motions of atmosphere and oceans such as frontogenesis, the formation of sharp fronts between masses of hot and cold air. The magneto-hydrodynamic equation models electrically conducting fluids in the presence of a magnetic field, such as plasmas, liquid metals, and electrolytes. This project focuses on the fundamental problem of whether physically relevant solutions to these equations are globally regular for all time or they develop singularities. Studying this problem for the surface quasi-geostrophic equation leads to a better understanding of the formation and evolution of violent meteorological phenomena such as thunderstorms and tornadoes. Study of the magneto-hydrodynamic equation sheds light on the singular behavior of magnetic reconnection and magnetic turbulence. Magnetic reconnection refers to the breaking and reconnecting of oppositely directed magnetic field lines in a plasma and is at the heart of many spectacular events in our solar system, such as solar flares and northern lights. Graduate students are involved in the work of the project. This project addresses a number of fundamental problems concerning the surface quasi-geostrophic equation and the magneto-hydrodynamic equation, including the issue of whether classical solutions of these equations can develop finite-time singularities. Effective techniques and unconventional approaches are developed to understand the nonlinear and potentially singular and turbulent dynamics of these models. In addition, extensive numerical computations are carried out to simulate the evolution of various solutions, to provide insight into the perplexing behavior of solutions to these equations. The project integrates research with education and training of graduate students and postdoctoral scholars.
WuDMS-1614246 研究人员研究了两个著名的偏微分方程模拟地球物理流体:表面准地转方程和磁流体动力学方程。 偏微分方程是理解许多流体现象的基本工具,在许多实际应用中起着举足轻重的作用。 地面准地转方程模拟大气和海洋的大尺度运动,如锋生,即热空气和冷空气之间尖锐锋的形成。 磁流体动力学方程模拟存在磁场的导电流体,例如等离子体、液态金属和电解质。 这个项目的重点是这些方程的物理相关的解决方案是否是全球定期的所有时间或他们开发奇点的基本问题。 研究这个问题的地面准地转方程导致更好地理解的形成和演变的剧烈的气象现象,如雷暴和龙卷风。 对磁流体动力学方程的研究揭示了磁重联和磁湍流的奇异行为。 磁场重联是指等离子体中反向磁场线的断裂和重新连接,是太阳系中许多壮观事件的核心,如太阳耀斑和北方极光。 研究生参与了该项目的工作。 这个项目解决了一些基本问题的表面准地转方程和磁流体动力学方程,包括这些方程的经典解决方案是否可以开发有限时间奇点的问题。 有效的技术和非常规的方法来理解这些模型的非线性和潜在的奇异和湍流动力学。 此外,进行了大量的数值计算来模拟各种解决方案的演变,提供洞察这些方程的解决方案的复杂行为。 该项目将研究与研究生和博士后学者的教育和培训相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiahong Wu其他文献
Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation
具有分数耗散的非电阻磁流体动力学方程的独特弱解
- DOI:
10.4310/cms.2020.v18.n4.a5 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Quansen Jiu;Xiaoxiao Suo;Jiahong Wu;Huan Yu - 通讯作者:
Huan Yu
Analytic results related to magneto-hydrodynamic turbulence
- DOI:
10.1016/s0167-2789(99)00158-x - 发表时间:
2000-02 - 期刊:
- 影响因子:0
- 作者:
Jiahong Wu - 通讯作者:
Jiahong Wu
Boundary Control for Optimal Mixing via Navier-Stokes Flows
通过纳维-斯托克斯流实现最佳混合的边界控制
- DOI:
10.1137/17m1148049 - 发表时间:
2018-07 - 期刊:
- 影响因子:2.2
- 作者:
Weiwei Hu;Jiahong Wu - 通讯作者:
Jiahong Wu
Stabilization of a Background Magnetic Field on a 2 Dimensional Magnetohydrodynamic Flow
二维磁流体动力流背景磁场的稳定
- DOI:
10.1137/20m1324776 - 发表时间:
2020-10 - 期刊:
- 影响因子:2
- 作者:
Nicki Boardman;Hongxia Lin;Jiahong Wu - 通讯作者:
Jiahong Wu
Type-A aortic dissection manifesting as acute inferior myocardial infarction
A型主动脉夹层表现为急性下壁心肌梗塞
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.6
- 作者:
Wenjun Wang;Jiahong Wu;Xin Zhao;B. You;Chuanbao Li - 通讯作者:
Chuanbao Li
Jiahong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiahong Wu', 18)}}的其他基金
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Stabilizing Phenomenon for Incompressible Fluids
不可压缩流体的稳定现象
- 批准号:
2104682 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
CBMS Conference: Regularity Problem for Partial Differential Equations Modeling Fluids and Geophysical Fluids
CBMS 会议:偏微分方程模拟流体和地球物理流体的正则性问题
- 批准号:
1342592 - 财政年份:2014
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
The Fourth Oklahoma Partial Differential Equations (PDE) Workshop; Oklahoma State University; October 26-27, 2013
第四届俄克拉荷马州偏微分方程 (PDE) 研讨会;
- 批准号:
1338025 - 财政年份:2013
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Analysis and Applications of Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程的分析与应用
- 批准号:
1209153 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
International Conference on Partial Differential Equations Modeling Fluids and Complex Fluids - Xi'an, China, June 2011
偏微分方程模拟流体和复杂流体国际会议 - 中国西安,2011 年 6 月
- 批准号:
1053163 - 财政年份:2011
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Collaborative Research: Oklahoma PDE and Applied Math Workshops
合作研究:俄克拉荷马州偏微分方程和应用数学研讨会
- 批准号:
1135402 - 财政年份:2011
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Oklahoma PDE Workshop; October 2009
俄克拉荷马州偏微分方程研讨会;
- 批准号:
0930845 - 财政年份:2009
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程
- 批准号:
0907913 - 财政年份:2009
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
相似海外基金
The Two-body Problem: Balancing Family Formation and Career in Power Couples
二体问题:权势夫妇的家庭组建与事业的平衡
- 批准号:
23K18830 - 财政年份:2023
- 资助金额:
$ 20.72万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The directed Oberwolfach problem: The two-table case
有向 Oberwolfach 问题:两个表的情况
- 批准号:
577712-2022 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Analysis of a two-phase overdetermined problem of Serrin type: from local to global
Serrin型两阶段超定问题分析:从局部到全局
- 批准号:
20K22298 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Synergistic approach to the two-body problem in General Relativity: black-hole binaries in the intermediate mass-ratio regime
广义相对论中双体问题的协同方法:中间质量比状态下的黑洞双星
- 批准号:
2283146 - 财政年份:2019
- 资助金额:
$ 20.72万 - 项目类别:
Studentship
Free boundary problem of compressible-incompressible viscous two-phase flows with phase transitions in unbounded domains
无界域中具有相变的可压缩-不可压缩粘性两相流的自由边界问题
- 批准号:
19J10168 - 财政年份:2019
- 资助金额:
$ 20.72万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New invariants for the gravitational two-body problem
引力二体问题的新不变量
- 批准号:
EP/M025802/1 - 财政年份:2015
- 资助金额:
$ 20.72万 - 项目类别:
Research Grant
Two-dimensional parts nesting problem
二维零件嵌套问题
- 批准号:
465201-2014 - 财政年份:2014
- 资助金额:
$ 20.72万 - 项目类别:
University Undergraduate Student Research Awards
Maximum smoothed likelihood estimation for the location shift in two sample problem
两个样本问题中位置偏移的最大平滑似然估计
- 批准号:
465351-2014 - 财政年份:2014
- 资助金额:
$ 20.72万 - 项目类别:
University Undergraduate Student Research Awards
The Two-Body Problem: An Evaluation of University Partner Accommodation Policies with Implications for Recruitment, Retention, and Promotion of STEM Women
《二体问题:大学合作伙伴住宿政策评估及其对 STEM 女性招聘、保留和晋升的影响》
- 批准号:
1310049 - 财政年份:2013
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
It Takes Two To Tango- On the Role of Collaborative Problem-Solving for Spousal Health Dynamics in Old Age
两个人一起探戈——论协作解决问题对老年配偶健康动态的作用
- 批准号:
252596 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
Operating Grants