The Fourth Oklahoma Partial Differential Equations (PDE) Workshop; Oklahoma State University; October 26-27, 2013
第四届俄克拉荷马州偏微分方程 (PDE) 研讨会;
基本信息
- 批准号:1338025
- 负责人:
- 金额:$ 2.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award supports the Fourth Oklahoma Workshop on Partial Differential Equations (PDEs), which will take place at Oklahoma State University (OSU), October 26-27, 2013. This workshop will feature several PDEs modeling fluids and geophysical fluids. Among them are the surface quasi-geostrophic (SQG) equation, the Boussinesq equations and the 3D Euler equations with special spatial symmetries. There are very exciting new developments on these PDEs in the last few years and significant progress has been made on many fundamental issues concerning these PDEs such as the global (in time) regularity problem. This workshop, inspired by these recent advances, strives to fulfill four major objectives: 1) to broadly disseminate the most recent advances in the focused research field; 2) to give local (Oklahoma and neighboring states) PDE researchers an opportunity to communicate directly with the leading experts and to expose themselves to the forefront research; 3) to provide a convenient platform for our graduate students, recent Ph.D.'s, women and minorities to present their research results; and 4) to stimulate interactions and interdisciplinary collaborations.PDEs are fundamental tools in understanding many fluid phenomena ranging from small scale blood flows to large-scale geophysical flows. The PDEs featured by this workshop have played important roles in many practical applications such as in the study of frontogenesis, the formation of sharp fronts between hot and cold air. This workshop aims to bring the state-of-the-art research in the focused research field to a broad audience in a timely fashion and to promote interactions and interdisciplinary collaborations between mathematicians and meteorologists including those in the National Weather Center in Norman, Oklahoma. It is hoped that this workshop will help accelerate the incorporation of the present cutting-edge research into the modeling and simulation of sophisticated weather phenomena such as tornadoes.
该NSF奖项支持第四届俄克拉荷马州偏微分方程(PDE)研讨会,该研讨会将于2013年10月26日至27日在俄克拉荷马州州立大学(OSU)举行。本研讨会将介绍几个偏微分方程建模流体和地球物理流体。其中包括表面准地转方程、Boussinesq方程和具有特殊空间对称性的三维Euler方程。在过去的几年里,这些偏微分方程有了非常令人兴奋的新发展,并且在关于这些偏微分方程的许多基本问题上取得了重大进展,例如全局(时间)正则性问题。本次研讨会,这些最新进展的启发,努力实现四个主要目标:1)广泛传播在重点研究领域的最新进展; 2)给当地(俄克拉荷马州和邻国)PDE研究人员有机会直接与领先的专家沟通,并暴露自己的前沿研究; 3)为我们的研究生,最近的博士提供一个方便的平台。偏微分方程是理解从小尺度血液流动到大尺度地球物理流动的许多流体现象的基本工具。这次研讨会的偏微分方程在许多实际应用中发挥了重要作用,例如锋生的研究,热空气和冷空气之间尖锐锋的形成。本次研讨会的目的是使国家的最先进的研究在重点研究领域,以及时的方式向广大观众,并促进数学家和气象学家之间的互动和跨学科的合作,包括那些在诺曼,俄克拉荷马州的国家气象中心。希望这次研讨会将有助于加速将目前的尖端研究纳入龙卷风等复杂天气现象的建模和模拟。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiahong Wu其他文献
Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation
具有分数耗散的非电阻磁流体动力学方程的独特弱解
- DOI:
10.4310/cms.2020.v18.n4.a5 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Quansen Jiu;Xiaoxiao Suo;Jiahong Wu;Huan Yu - 通讯作者:
Huan Yu
Analytic results related to magneto-hydrodynamic turbulence
- DOI:
10.1016/s0167-2789(99)00158-x - 发表时间:
2000-02 - 期刊:
- 影响因子:0
- 作者:
Jiahong Wu - 通讯作者:
Jiahong Wu
Boundary Control for Optimal Mixing via Navier-Stokes Flows
通过纳维-斯托克斯流实现最佳混合的边界控制
- DOI:
10.1137/17m1148049 - 发表时间:
2018-07 - 期刊:
- 影响因子:2.2
- 作者:
Weiwei Hu;Jiahong Wu - 通讯作者:
Jiahong Wu
Stabilization of a Background Magnetic Field on a 2 Dimensional Magnetohydrodynamic Flow
二维磁流体动力流背景磁场的稳定
- DOI:
10.1137/20m1324776 - 发表时间:
2020-10 - 期刊:
- 影响因子:2
- 作者:
Nicki Boardman;Hongxia Lin;Jiahong Wu - 通讯作者:
Jiahong Wu
Type-A aortic dissection manifesting as acute inferior myocardial infarction
A型主动脉夹层表现为急性下壁心肌梗塞
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.6
- 作者:
Wenjun Wang;Jiahong Wu;Xin Zhao;B. You;Chuanbao Li - 通讯作者:
Chuanbao Li
Jiahong Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiahong Wu', 18)}}的其他基金
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Stabilizing Phenomenon for Incompressible Fluids
不可压缩流体的稳定现象
- 批准号:
2104682 - 财政年份:2021
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Regularity Problem on Two Models from Fluid Dynamics
流体动力学两个模型的正则性问题
- 批准号:
1614246 - 财政年份:2016
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
CBMS Conference: Regularity Problem for Partial Differential Equations Modeling Fluids and Geophysical Fluids
CBMS 会议:偏微分方程模拟流体和地球物理流体的正则性问题
- 批准号:
1342592 - 财政年份:2014
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Analysis and Applications of Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程的分析与应用
- 批准号:
1209153 - 财政年份:2012
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
International Conference on Partial Differential Equations Modeling Fluids and Complex Fluids - Xi'an, China, June 2011
偏微分方程模拟流体和复杂流体国际会议 - 中国西安,2011 年 6 月
- 批准号:
1053163 - 财政年份:2011
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Collaborative Research: Oklahoma PDE and Applied Math Workshops
合作研究:俄克拉荷马州偏微分方程和应用数学研讨会
- 批准号:
1135402 - 财政年份:2011
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Oklahoma PDE Workshop; October 2009
俄克拉荷马州偏微分方程研讨会;
- 批准号:
0930845 - 财政年份:2009
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程
- 批准号:
0907913 - 财政年份:2009
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
ART: Intensifying Translation of Research in Oklahoma (InTRO)
艺术:俄克拉荷马州研究的强化转化(InTRO)
- 批准号:
2331409 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Cooperative Agreement
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
IHBEM: Using socioeconomic, behavioral and environmental data to understand disease dynamics: exploring COVID-19 outcomes in Oklahoma
IHBEM:利用社会经济、行为和环境数据了解疾病动态:探索俄克拉荷马州的 COVID-19 结果
- 批准号:
2327844 - 财政年份:2024
- 资助金额:
$ 2.68万 - 项目类别:
Continuing Grant
Equipment: Acquisition of the IRIS instruments FullWaver device for monitoring active landslides in Oklahoma
设备:购买 IRIS 仪器 FullWaver 设备,用于监测俄克拉荷马州活跃的山体滑坡
- 批准号:
2302845 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Standard Grant
Oklahoma C. difficile U19 Administrative Core
俄克拉荷马州艰难梭菌 U19 管理核心
- 批准号:
10625173 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Oklahoma Center for Respiratory and Infectious Diseases
俄克拉荷马州呼吸和传染病中心
- 批准号:
10628212 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Post-Baccalaureate Research and Education Program (PREP) for Oklahoma
俄克拉荷马州学士后研究与教育计划 (PREP)
- 批准号:
10556953 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:
Expanding Excellence in Developmental Biology in Oklahoma
扩大俄克拉荷马州发育生物学的卓越水平
- 批准号:
10629614 - 财政年份:2023
- 资助金额:
$ 2.68万 - 项目类别:














{{item.name}}会员




