Analysis and Applications of Two Partial Differential Equations Modeling Geophysical Fluids

模拟地球物理流体的两个偏微分方程的分析与应用

基本信息

  • 批准号:
    1209153
  • 负责人:
  • 金额:
    $ 19.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This award will support research that addresses fundamental issues as well as practical applications of two well-known partial differential equations modeling geophysical fluids: the surface quasi-geostrophic (SQG) equation and the two-dimensional (2D) Boussinesq equation. The SQG equation has been very useful in modeling large-scale motions of atmosphere and oceans such as the frontogenesis, the formation of sharp fronts between masses of hot and cold air. The Boussinesq equation has also been successful in modeling many geophysical flows such as atmospheric fronts and ocean circulations. In addition, the Boussinesq equation is also at the center of turbulence theories concerning turbulent thermal convection. Mathematically, the SQG equation and the 2D Boussinesq equation serve as lower dimensional models of the three-dimensional (3D) hydrodynamics equations. In fact, they both retain the key features of the 3D Navier-Stokes and the 3D Euler equations such as the vortex stretching mechanism. The proposed study on these 2D models may shed light on the mystery surrounding the 3D equations. This project focuses on the fundamental issue of whether physically relevant solutions to these equations are globally regular for all time or they develop singularities. The objective here is to introduce new ideas and develop effective techniques to solve the outstanding open global regularity problem on the supercritical SQG equation and on the Boussinesq equation with partial or no dissipation. Extensive large numerical simulations will be performed to provide insight to the underlying dynamics and novel estimates via dedicated tools from harmonic analysis and differential equations will be derived to gauge the large-time behavior of their solutions. The award will support Ph.D. students in mathematics at Oklahoma State University.Partial differential equations are fundamental tools in understanding many fluid phenomena ranging from small scale blood flows to large-scale geophysical flows and have played pivotal roles in many practical applications involving fluid flows. Outstandingly among them are the Navier-Stokes equations, which are widely used for describing phenomena that are as varied as lubrication in machine equipment, airflow around a wind turbine, oceanic flows, and large scale atmospheric flows that are responsible for cold fronts and the jet stream. The study and use of the full Navier-Stokes equation is notoriously difficult and there are still fundamental open questions associated with them. Researchers have therefore developed several simplified versions of these equations that still retain some of their fundamental properties. These partial differential equations have been at the center of numerous analytical, experimental and numerical investigations. One of the most prominent problems concerning these equations is whether all of their classical solutions are global in time. An affirmative answer would suggest that they may be valid even in extremal flow situations and that it makes sense to attempt to solve them with computational methods, while a negative answer will point to possible limitations of their use and to inherent difficulties when a numerical solution is attempted. This problem can be extremely challenging and remains open in many important cases. The main goal of this project is to create new strategies and develop effective techniques to further advance the research on and improve our understanding of this difficult problem. The emphasis will be on unconventional approaches that combine methods and tools from different mathematical disciplines such as fluid mechanics, harmonic analysis and numerical simulations. The project will integrate research with education, promoting teaching and training of students. Four Ph.D. students will work with the PI on various aspects of the problems that will be tackled with this award and will be trained in the use of a wide variety of mathematical techniques. In addition, the PI will organize several specialized scientific conferences and conference sessions during the award period, which will involve and support junior mathematicians as well as researchers from under-represented groups.
该奖项将支持解决基本问题的研究,以及两个著名的偏微分方程建模地球物理流体的实际应用:表面准地转(SQG)方程和二维(2D)Boussinesq方程。SQG方程在模拟大气和海洋的大尺度运动,如锋生、冷空气和热空气之间锋面的形成等方面有着重要的应用。Boussinesq方程也成功地模拟了许多地球物理流动,如大气锋和海洋环流。此外,Boussinesq方程也是有关湍流热对流的湍流理论的中心。在数学上,SQG方程和2D Boussinesq方程作为三维(3D)流体动力学方程的低维模型。事实上,它们都保留了三维Navier-Stokes方程和三维Euler方程的关键特征,如涡拉伸机制。对这些2D模型的拟议研究可能会揭示围绕3D方程的奥秘。这个项目的重点是这些方程的物理相关的解决方案是否是全球定期的所有时间或他们开发奇点的基本问题。这里的目标是引入新的思想和发展有效的技术,以解决突出的开放的整体正则性问题的超临界SQG方程和Boussinesq方程的部分或无耗散。将进行广泛的大型数值模拟,以提供对潜在动力学的洞察力,并通过谐波分析和微分方程的专用工具进行新的估计,以衡量其解决方案的大时间行为。该奖项将支持博士学位。在俄克拉荷马州州立大学数学系的学生中,偏微分方程是理解从小尺度血液流动到大尺度地球物理流动的许多流体现象的基本工具,并且在涉及流体流动的许多实际应用中发挥了关键作用。其中最突出的是纳维尔-斯托克斯方程,它被广泛用于描述各种现象,如机器设备中的润滑、风力涡轮机周围的气流、海洋流动以及造成冷锋和急流的大规模大气流动。众所周知,研究和使用完整的Navier-Stokes方程是非常困难的,并且仍然存在与之相关的基本开放问题。因此,研究人员开发了这些方程的几个简化版本,仍然保留了它们的一些基本性质。这些偏微分方程已经在许多分析,实验和数值研究的中心。关于这些方程最突出的问题之一是,是否所有的经典解都是整体的时间。一个肯定的答案将表明,他们可能是有效的,甚至在极端的流动情况下,这是有意义的,试图解决他们的计算方法,而否定的答案将指出其使用的可能限制和固有的困难时,试图数值解。这个问题可能极具挑战性,在许多重要情况下仍然悬而未决。该项目的主要目标是创建新的策略和开发有效的技术,以进一步推进对这一难题的研究,并提高我们对这一难题的理解。重点将放在非常规的方法,结合联合收割机的方法和工具,从不同的数学学科,如流体力学,谐波分析和数值模拟。该项目将把研究与教育结合起来,促进教学和学生培训。四个博士学生将与PI合作解决该奖项将解决的问题的各个方面,并将接受使用各种数学技术的培训。此外,PI将在颁奖期间组织几次专业科学会议和会议,这将涉及并支持初级数学家以及代表性不足的群体的研究人员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiahong Wu其他文献

Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation
具有分数耗散的非电阻磁流体动力学方程的独特弱解
  • DOI:
    10.4310/cms.2020.v18.n4.a5
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quansen Jiu;Xiaoxiao Suo;Jiahong Wu;Huan Yu
  • 通讯作者:
    Huan Yu
Analytic results related to magneto-hydrodynamic turbulence
  • DOI:
    10.1016/s0167-2789(99)00158-x
  • 发表时间:
    2000-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiahong Wu
  • 通讯作者:
    Jiahong Wu
Boundary Control for Optimal Mixing via Navier-Stokes Flows
通过纳维-斯托克斯流实现最佳混合的边界控制
Stabilization of a Background Magnetic Field on a 2 Dimensional Magnetohydrodynamic Flow
二维磁流体动力流背景磁场的稳定
Type-A aortic dissection manifesting as acute inferior myocardial infarction
A型主动脉夹层表现为急性下壁心肌梗塞
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Wenjun Wang;Jiahong Wu;Xin Zhao;B. You;Chuanbao Li
  • 通讯作者:
    Chuanbao Li

Jiahong Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiahong Wu', 18)}}的其他基金

Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Stabilizing Phenomenon for Incompressible Fluids
不可压缩流体的稳定现象
  • 批准号:
    2104682
  • 财政年份:
    2021
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Regularity Problem on Two Models from Fluid Dynamics
流体动力学两个模型的正则性问题
  • 批准号:
    1614246
  • 财政年份:
    2016
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
CBMS Conference: Regularity Problem for Partial Differential Equations Modeling Fluids and Geophysical Fluids
CBMS 会议:偏微分方程模拟流体和地球物理流体的正则性问题
  • 批准号:
    1342592
  • 财政年份:
    2014
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
The Fourth Oklahoma Partial Differential Equations (PDE) Workshop; Oklahoma State University; October 26-27, 2013
第四届俄克拉荷马州偏微分方程 (PDE) 研讨会;
  • 批准号:
    1338025
  • 财政年份:
    2013
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
International Conference on Partial Differential Equations Modeling Fluids and Complex Fluids - Xi'an, China, June 2011
偏微分方程模拟流体和复杂流体国际会议 - 中国西安,2011 年 6 月
  • 批准号:
    1053163
  • 财政年份:
    2011
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Oklahoma PDE and Applied Math Workshops
合作研究:俄克拉荷马州偏微分方程和应用数学研讨会
  • 批准号:
    1135402
  • 财政年份:
    2011
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Two Partial Differential Equations Modeling Geophysical Fluids
模拟地球物理流体的两个偏微分方程
  • 批准号:
    0907913
  • 财政年份:
    2009
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Oklahoma PDE Workshop; October 2009
俄克拉荷马州偏微分方程研讨会;
  • 批准号:
    0930845
  • 财政年份:
    2009
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

EAGER: Knit One, Purl Two, Studies on the Properties of Knitted Fabrics for Advanced Engineering Applications
EAGER:针织一,金银丝二,高级工程应用针织物性能研究
  • 批准号:
    2344589
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Decision-making problems considering two variables under ambiguity: theory and applications
考虑模糊条件下两个变量的决策问题:理论和应用
  • 批准号:
    23K01468
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309733
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309732
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Models, algorithms, simulations and applications for dendritic solidifications of two-phase multi-component alloys in the mushy zone
合作研究:糊状区两相多组分合金枝晶凝固的模型、算法、模拟和应用
  • 批准号:
    2309731
  • 财政年份:
    2023
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Standard Grant
Engineering of Two-Dimensional Materials for Clean Energy Conversion and Storage Applications
用于清洁能源转换和存储应用的二维材料工程
  • 批准号:
    RGPIN-2022-05363
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced two-dimensional braided composite materials for industrial applications using renewable resources: manufacturing, testing and modeling
使用可再生资源用于工业应用的先进二维编织复合材料:制造、测试和建模
  • 批准号:
    RGPIN-2022-03043
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Discovery Grants Program - Individual
Engineering of Two-Dimensional Materials for Clean Energy Conversion and Storage Applications
用于清洁能源转换和存储应用的二维材料工程
  • 批准号:
    DGECR-2022-00080
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Discovery Launch Supplement
Hydrogel two-phase flows: hydrodynamics and applications
水凝胶两相流:流体动力学和应用
  • 批准号:
    RGPIN-2019-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Discovery Grants Program - Individual
A Theoretical Investigation of Calcium Fluoride/Two-Dimensional Semiconductor Heterostructures for Nanoelectronic Device Applications
用于纳米电子器件应用的氟化钙/二维半导体异质结构的理论研究
  • 批准号:
    558798-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 19.46万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了