Hilbert transform with incomplete data and applications in Tomography and Optics

不完整数据的希尔伯特变换及其在层析成像和光学中的应用

基本信息

项目摘要

In computed tomography (CT), detectors usually cover the entire cross-section of the patient. Even when a small organ inside the patient needs to be visualized, the entire cross-section is irradiated. Development of robust algorithms for image reconstruction from truncated CT data (i.e., the data obtained by irradiating only a region of interest (ROI) inside the patient) will have numerous benefits, such as reducing the radiation dose to patients in many CT scans, opening the way to novel multimodality imaging platforms, etc. In this project, we will investigate stability of algorithms for reconstruction from truncated CT data. Similar mathematical approaches are useful for the study of image reconstruction from incomplete data in optical imaging, such as in microscopy and optical metrology applications. We will apply the methods developed for CT to optical imaging with the goal of increasing the field-of-view or reducing the amount of measurements, while maintaining spatial resolution in the ROI. This research may pave the way to the development of inexpensive, large-field-of-view direct phase imaging systems, which, in turn, would benefit cell biology research, and applications such as digital pathology and cell-tracking. In CT with truncated data, the key analytical tool is the Gelfand-Graev formula, which transforms the tomographic reconstruction problem to the problem of inverting the finite Hilbert transform (FHT) of the attenuation coefficient from incomplete data. When CT data are truncated, reconstruction of the attenuation coefficient is frequently non-unique. On the other hand, the contribution of the missing data to the ROI is analytic, and adding prior knowledge about the attenuation coefficient inside the ROI restores uniqueness. Another application where inversion of the FHT with incomplete data is useful is optical imaging. Inspired by the recent development of compressive optical imaging in spectroscopy and holography, optical systems based on the FHT have the potential to achieve high resolution, high speed phase contrast imaging. In a number of microscopy imaging applications, prior knowledge about the sample being investigated is possible to obtain. Thus, similar approaches can be used both for CT and for optical imaging. The objective of the research is to develop theory and algorithms for inverting the FHT with incomplete data. We will estimate stability of inverting the FHT with incomplete data by finding the singular value decomposition of the relevant operators. The method of the Riemann-Hilbert problem, perturbation theory, and the Titchmarsh-Weyl theory, are some of the mathematical tools that will be used in this project. We also plan to develop and test the corresponding reconstruction algorithms and test them on simulated and experimental data.
在计算机断层扫描 (CT) 中,探测器通常覆盖患者的整个横截面。即使需要对患者体内的一个小器官进行可视化,整个横截面也会受到照射。开发用于从截断的 CT 数据(即通过仅照射患者体内感兴趣区域 (ROI) 获得的数据)进行图像重建的稳健算法将具有许多好处,例如减少许多 CT 扫描中对患者的辐射剂量,为新型多模态成像平台开辟道路等。在这个项目中,我们将研究从截断的 CT 数据重建算法的稳定性。类似的数学方法可用于研究光学成像中不完整数据的图像重建,例如在显微镜和光学计量应用中。我们将把为 CT 开发的方法应用于光学成像,目的是增加视野或减少测量量,同时保持 ROI 的空间分辨率。这项研究可能为开发廉价、大视场直接相位成像系统铺平道路,这反过来又将有利于细胞生物学研究以及数字病理学和细胞跟踪等应用。在截断数据CT中,关键的分析工具是Gelfand-Graev公式,它将层析成像重建问题转化为从不完整数据中求出衰减系数的有限希尔伯特变换(FHT)的反演问题。当 CT 数据被截断时,衰减系数的重建通常是不唯一的。另一方面,缺失数据对 ROI 的贡献是分析性的,并且添加有关 ROI 内部衰减系数的先验知识可以恢复唯一性。光学成像是利用不完整数据进行 FHT 反演的另一个有用应用。受光谱学和全息术中压缩光学成像最新发展的启发,基于 FHT 的光学系统具有实现高分辨率、高速相衬成像的潜力。在许多显微成像应用中,可以获得有关所研究样品的先验知识。因此,类似的方法可用于 CT 和光学成像。该研究的目的是开发用不完整数据反演 FHT 的理论和算法。我们将通过找到相关算子的奇异值分解来估计不完整数据反演 FHT 的稳定性。 Riemann-Hilbert 问题的方法、微扰理论和 Titchmarsh-Weyl 理论是该项目中将使用的一些数学工具。我们还计划开发和测试相应的重建算法,并在模拟和实验数据上进行测试。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inversion formula and range conditions for a linear system related with the multi‐interval finite Hilbert transform in L 2
L 2 中多区间有限希尔伯特变换相关线性系统的反演公式和范围条件
  • DOI:
    10.1002/mana.201800567
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Katsevich, Alexander;Bertola, Marco;Tovbis, Alexander
  • 通讯作者:
    Tovbis, Alexander
Analysis of resolution of tomographic-type reconstruction from discrete data for a class of distributions
一类分布的离散数据断层扫描型重建的分辨率分析
  • DOI:
    10.1088/1361-6420/abb2fb
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Katsevich, Alexander
  • 通讯作者:
    Katsevich, Alexander
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Katsevich其他文献

Local reconstruction analysis of inverting the Radon transform in the plane from noisy discrete data
噪声离散数据平面内Radon变换反演的局部重构分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Abhishek;Alexander Katsevich;James W. Webber
  • 通讯作者:
    James W. Webber
Broken ray transform: inversion and a range condition
断线变换:反演和范围条件
  • DOI:
    10.1088/0266-5611/29/7/075008
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Alexander Katsevich;Roman Krylov
  • 通讯作者:
    Roman Krylov
Analysis of Reconstruction of Functions with Rough Edges from Discrete Radon Data in $${\mathbb {R}}^2$$
Analysis of reconstruction from noisy discrete generalized Radon data
噪声离散广义氡数据的重建分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Katsevich
  • 通讯作者:
    Alexander Katsevich

Alexander Katsevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Katsevich', 18)}}的其他基金

Novel Resolution Analysis of Reconstruction Algorithms in Tomography
断层扫描重建算法的新颖分辨率分析
  • 批准号:
    1906361
  • 财政年份:
    2019
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Aspects of Interior Problem of Tomography
合作研究:层析成像内部问题的数学方面
  • 批准号:
    1211164
  • 财政年份:
    2012
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Inversion of the Broken-Ray Radon Transform and Applications
合作研究:断射线氡变换反演及应用
  • 批准号:
    1115615
  • 财政年份:
    2011
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Novel techniques for cardiac imaging
心脏成像新技术
  • 批准号:
    0806304
  • 财政年份:
    2008
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Efficient Algorithms for Inversion of Cone Beam Data for General Trajectories
一般轨迹锥束数据反演的高效算法
  • 批准号:
    0505494
  • 财政年份:
    2005
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
An Efficient Algorithm for Inversion of Truncated Spiral Cone Beam Data
截头螺旋锥束数据反演的一种高效算法
  • 批准号:
    0104033
  • 财政年份:
    2001
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Nonclassical PDO and Some Practical Problems of Local Tomography
非经典PDO与局部层析成像的一些实际问题
  • 批准号:
    9704285
  • 财政年份:
    1997
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant

相似国自然基金

视觉智能Shapelet Transform驱动的SHM数据关联分析与域自适应迁移机制深度学习
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
  • 批准号:
    2334954
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
ART: Translational Research Ambassadors Network for Strengthening Institutional Capacity and Fostering a Responsive and Open Mindset (TRANSFORM)
ART:加强机构能力和培养积极响应和开放心态的转化研究大使网络(TRANSFORM)
  • 批准号:
    2331208
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
  • 批准号:
    2334955
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Maximizing the Impact of Engineering Laboratory Studies to Transform Undergraduate Engineering Curriculum and Advance Student Outcomes
最大限度地发挥工程实验室研究的影响,改变本科工程课程并提高学生的成绩
  • 批准号:
    2337194
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Research Grant
MFB: Partnerships to Transform Emerging Industries - RNA Tools/Biotechnology: Stabilizing Hairpin Inserts in RNA Virus Induced Gene Silencing Vectors
MFB:合作变革新兴产业 - RNA 工具/生物技术:稳定 RNA 病毒诱导基因沉默载体中的发夹插入
  • 批准号:
    2330663
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
  • 批准号:
    2334952
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Designing multi-knowledge protocols to transform transboundary policies for hydroclimatic extremes(DEMO TAPE)
设计多知识协议以转变极端水文气候的跨境政策(DEMO TAPE)
  • 批准号:
    EP/Y036905/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Research Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
  • 批准号:
    2334951
  • 财政年份:
    2024
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了