Novel Resolution Analysis of Reconstruction Algorithms in Tomography
断层扫描重建算法的新颖分辨率分析
基本信息
- 批准号:1906361
- 负责人:
- 金额:$ 17.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A number of practically important imaging problems involve inversion of an integral transform, that is, recovery of a function from its integrals over a family of surfaces. Examples of surfaces are planes, spheres, ellipses, etc. Applications include X-ray computer tomography (CT), ultrasound imaging, thermo-acoustic and photo-acoustic tomography, Compton camera imaging, and many others. Frequently, reconstruction is achieved by applying a linear inversion formula. It is of fundamental importance to know how the resolution of the reconstruction depends on data sampling. Despite the significance of this problem, not much is known about the resolution of tomographic reconstruction from discrete data. For general transforms, results are scarce and mostly semi-qualitative. The objective of this project is to develop and rigorously justify a novel approach to resolution analysis of a general class of transforms. The approach is based on the analysis of how accurately the singularities of the function are reconstructed. The project will provide a flexible theoretical framework for computing the resolution of a wide range of algorithms that reconstruct from discrete data. It will lead to a deeper insight into how tomographic algorithms reconstruct singularities of an object, analysis of artifacts, detectability of small objects, and open the opportunity for virtually unlimited further exploration. The project provides opportunities and support for the training of graduate students.More specifically, the project encompasses the following general aims: (i) analysis of resolution in the setting of the Generalized Radon Transform (GRT); (ii) applications of the theory to address practical needs of imaging; and (iii) numerical verification of the obtained formulas. The reconstruction problem is formulated in terms of the GRT, which integrates over a fairly general family of surfaces. The investigator plans to obtain explicitly the edge response of the reconstruction as the data sampling rate increases. This setting is general and covers a wide range of integral transforms. The idea of the approach is to combine the tools of microlocal analysis and computational mathematics. This approach will be applied to several more narrowly defined problems, including analysis of resolution of common reconstruction algorithms. The results obtained will be tested on numerical experiments. This will typically involve implementing a reconstruction algorithm and comparing actual and predicted resolutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一些实际上重要的成像问题涉及积分变换的反演,即从一族曲面上的积分恢复函数。表面的例子是平面、球体、椭圆等。应用包括X射线计算机断层扫描(CT)、超声成像、热声和光声断层扫描、康普顿照相机成像等。通常,通过应用线性反演公式来实现重建。了解重建的分辨率如何取决于数据采样是至关重要的。尽管这个问题的重要性,不太知道从离散数据的层析重建的分辨率。对于一般变换,结果很少,而且大多是半定性的。这个项目的目的是开发和严格证明一种新的方法来解决一般类的转换分析。该方法是基于如何准确地重建的功能的奇异性的分析。该项目将提供一个灵活的理论框架,用于计算从离散数据重建的各种算法的分辨率。它将导致更深入地了解层析成像算法如何重建物体的奇点,分析工件,小物体的可检测性,并为几乎无限的进一步探索提供机会。该项目为培养研究生提供了机会和支持,具体而言,该项目包括以下总体目标:(i)在广义拉东变换(GRT)的背景下分析分辨率;(ii)将该理论应用于成像的实际需要;(iii)对所获得的公式进行数值验证。重建问题制定的GRT,它集成了一个相当一般的家庭的表面。随着数据采样率的增加,研究者计划明确获得重建的边缘响应。此设置是通用的,涵盖了广泛的积分变换。该方法的思想是将微局部分析和计算数学的工具联合收割机结合起来。这种方法将被应用到几个更狭义的问题,包括常见的重建算法的分辨率分析。所得结果将在数值实验上进行检验。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inversion formula and range conditions for a linear system related with the multi‐interval finite Hilbert transform in L 2
L 2 中多区间有限希尔伯特变换相关线性系统的反演公式和范围条件
- DOI:10.1002/mana.201800567
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Katsevich, Alexander;Bertola, Marco;Tovbis, Alexander
- 通讯作者:Tovbis, Alexander
Analysis of resolution of tomographic-type reconstruction from discrete data for a class of distributions
一类分布的离散数据断层扫描型重建的分辨率分析
- DOI:10.1088/1361-6420/abb2fb
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Katsevich, Alexander
- 通讯作者:Katsevich, Alexander
Novel Resolution Analysis for the Radon Transform in \(\mathbb R^2\) for Functions with Rough Edges
具有粗糙边缘的函数 (mathbb R^2) 中 Radon 变换的新颖解析分析
- DOI:10.1137/22m1502252
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Katsevich, Alexander
- 通讯作者:Katsevich, Alexander
Resolution of 2 Dimensional Reconstruction of Functions with Nonsmooth Edges from Discrete Radon Transform Data
离散Radon变换数据二维非光滑边缘函数重构的解析
- DOI:10.1137/21m1466712
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Katsevich, Alexander
- 通讯作者:Katsevich, Alexander
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Katsevich其他文献
Local reconstruction analysis of inverting the Radon transform in the plane from noisy discrete data
噪声离散数据平面内Radon变换反演的局部重构分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Anuj Abhishek;Alexander Katsevich;James W. Webber - 通讯作者:
James W. Webber
Broken ray transform: inversion and a range condition
断线变换:反演和范围条件
- DOI:
10.1088/0266-5611/29/7/075008 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
Alexander Katsevich;Roman Krylov - 通讯作者:
Roman Krylov
Analysis of Reconstruction of Functions with Rough Edges from Discrete Radon Data in $${\mathbb {R}}^2$$
- DOI:
10.1007/s00041-025-10175-6 - 发表时间:
2025-05-30 - 期刊:
- 影响因子:1.200
- 作者:
Alexander Katsevich - 通讯作者:
Alexander Katsevich
Analysis of reconstruction from noisy discrete generalized Radon data
噪声离散广义氡数据的重建分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Alexander Katsevich - 通讯作者:
Alexander Katsevich
RESOLUTION ANALYSIS OF INVERTING THE GENERALIZED RADON TRANSFORM FROM DISCRETE DATA IN R
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Alexander Katsevich - 通讯作者:
Alexander Katsevich
Alexander Katsevich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Katsevich', 18)}}的其他基金
Hilbert transform with incomplete data and applications in Tomography and Optics
不完整数据的希尔伯特变换及其在层析成像和光学中的应用
- 批准号:
1615124 - 财政年份:2016
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Aspects of Interior Problem of Tomography
合作研究:层析成像内部问题的数学方面
- 批准号:
1211164 - 财政年份:2012
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Collaborative Research: Inversion of the Broken-Ray Radon Transform and Applications
合作研究:断射线氡变换反演及应用
- 批准号:
1115615 - 财政年份:2011
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Efficient Algorithms for Inversion of Cone Beam Data for General Trajectories
一般轨迹锥束数据反演的高效算法
- 批准号:
0505494 - 财政年份:2005
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
An Efficient Algorithm for Inversion of Truncated Spiral Cone Beam Data
截头螺旋锥束数据反演的一种高效算法
- 批准号:
0104033 - 财政年份:2001
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Nonclassical PDO and Some Practical Problems of Local Tomography
非经典PDO与局部层析成像的一些实际问题
- 批准号:
9704285 - 财政年份:1997
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
相似国自然基金
基于Resolution算法的交互时态逻辑自动验证机
- 批准号:61303018
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel phenotyping and functional analysis of the human cytotrophoblasts in single cell resolution
单细胞分辨率下人类细胞滋养层的新表型分析和功能分析
- 批准号:
23K08813 - 财政年份:2023
- 资助金额:
$ 17.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Establishment of a novel deep 3D super-resolution observation method for living organisms by spatiotemporal fluorescence correlation analysis
利用时空荧光相关分析建立生物体深度3D超分辨观测新方法
- 批准号:
22K14578 - 财政年份:2022
- 资助金额:
$ 17.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Learning novel multi-resolution representations of graphs: Applications to Brain Connectivity analysis for Alzheimer's Disease
CRII:RI:学习图形的新颖多分辨率表示:在阿尔茨海默氏病大脑连接分析中的应用
- 批准号:
1948510 - 财政年份:2020
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Super-resolution imaging analysis of the novel actin structure found on the centrosome during ciliogenesis.
对纤毛发生期间中心体上发现的新型肌动蛋白结构进行超分辨率成像分析。
- 批准号:
19K06644 - 财政年份:2019
- 资助金额:
$ 17.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel longitudinal analysis of high-resolution peripheral quantitative computed tomography and finite element predicted bone strength.
高分辨率外周定量计算机断层扫描和有限元预测骨强度的新颖纵向分析。
- 批准号:
543183-2019 - 财政年份:2019
- 资助金额:
$ 17.09万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
An analysis for the resolution of mechanism of cognitive reserve from the novel standpoint of cholinergic nervous system
从胆碱能神经系统新角度解析认知储备的解决机制
- 批准号:
19K16922 - 财政年份:2019
- 资助金额:
$ 17.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Physics of Satellite Galaxy Quenching: Novel Analysis of Observations, and High-Resolution Simulations
卫星星系猝灭的物理学:观测的新颖分析和高分辨率模拟
- 批准号:
1815475 - 财政年份:2018
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Collaborative Research: Visualization, analysis, and HPC modeling of subglacial hydrology from high-resolution 3D conduit scans acquired with a novel sensor
合作研究:通过新型传感器获取的高分辨率 3D 管道扫描对冰下水文进行可视化、分析和 HPC 建模
- 批准号:
1629893 - 财政年份:2015
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
Analysis of structure-function relationship of novel amino-acylases useful for optical resolution of beta-amino acids used as pharmaceutical raw materials.
用于光学拆分医药原料β-氨基酸的新型氨基酰化酶的结构-功能关系分析。
- 批准号:
15K07401 - 财政年份:2015
- 资助金额:
$ 17.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Visualization, analysis, and HPC modeling of subglacial hydrology from high-resolution 3D conduit scans acquired with a novel sensor
合作研究:通过新型传感器获取的高分辨率 3D 管道扫描对冰下水文进行可视化、分析和 HPC 建模
- 批准号:
1503928 - 财政年份:2015
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant