Efficient Algorithms for Inversion of Cone Beam Data for General Trajectories

一般轨迹锥束数据反演的高效算法

基本信息

项目摘要

Award abstract 0505494, Alexander Katsevich, University of Central FloridaTitle: Efficient algorithms for inversion of cone beam data for general trajectories ABSTRACTThe Principal Investigator (PI) plans to develop practical image reconstruction algorithms for inverting the cone beam transform in the cases when the x-ray source moves along trajectories, such as circle-and-arc, saddle, etc. It is expected that the new algorithms will be theoretically exact and efficient (i.e., with the Filtered Backprojection structure). In addition to algorithm development, the PI plans to perform theoretical analysis of the algorithms. As opposed to the Radon transform, inversion of the cone beam transform in the three dimensional Euclidean space is a complicated problem. Not much is known about the properties of exact inversion algorithms. Do they generalize to distributions? What is the stability of reconstruction in the scale of Sobolev spaces? What are possible artifacts in the case of non-perfect data? These are some of the questions that the PI plans to address. The proposed research is of practical significance, because the cone beam transform is a theoretical foundation of computer tomography (CT). The main principle of CT is based on transmitting a cone beam of x-rays through the patient from various directions. This is achieved by moving the x-ray source along a predetermined trajectory. For each source position a detector measures the intensity of the beam as it exits the patient. Then the data are inverted according to a mathematical algorithm. CT scans can be performed using a gantry or a C-arm. The circle-and-arc trajectory may arise when the scanner is a portable C-arm. There is a significant need for volumetric visualization using portable C-arms. The prime application is for image-guided interventional procedures requiring intraoperative imaging, in which moving the patient is to be avoided. The advantage of portable C-arms is that they can be moved into the room where the patient is undergoing the procedure. Saddle trajectories may be of interest for cardiac imaging. The theoretical component of the proposed research will result in a deeper understanding of cone beam transform inversion for general trajectories.
摘要:项目负责人(PI)计划开发一种实用的图像重建算法,用于x射线源沿圆弧、鞍形等轨迹运动情况下的锥形光束变换反演。预计新算法在理论上是精确和有效的(即过滤后的反向投影结构)。除了算法开发之外,PI计划对算法进行理论分析。相对于Radon变换,锥束变换在三维欧几里德空间中的反演是一个复杂的问题。人们对精确反演算法的性质知之甚少。它们能推广到分布吗?索博列夫空间尺度下重构的稳定性是什么?在非完美数据的情况下,有哪些可能的伪影?这些都是PI计划解决的一些问题。锥束变换是计算机断层扫描(CT)的理论基础,因此本文的研究具有重要的现实意义。CT的主要原理是将一束锥形的x射线从不同的方向穿透病人。这是通过沿着预定轨迹移动x射线源来实现的。对于每个光源位置,探测器测量光束离开病人时的强度。然后根据数学算法对数据进行倒排。CT扫描可以使用龙门架或c型臂进行。当扫描仪为便携式c型臂时,可能会出现圆弧轨迹。使用便携式c型臂进行体积可视化是非常必要的。主要应用于需要术中成像的图像引导介入手术,其中避免移动患者。便携式c型臂的优点是,它们可以移动到病人正在接受手术的房间里。鞍形轨迹可能是心脏成像的兴趣点。提出的研究的理论组成部分将导致对一般轨迹的锥束变换反演有更深的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Katsevich其他文献

Local reconstruction analysis of inverting the Radon transform in the plane from noisy discrete data
噪声离散数据平面内Radon变换反演的局部重构分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anuj Abhishek;Alexander Katsevich;James W. Webber
  • 通讯作者:
    James W. Webber
Broken ray transform: inversion and a range condition
断线变换:反演和范围条件
  • DOI:
    10.1088/0266-5611/29/7/075008
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Alexander Katsevich;Roman Krylov
  • 通讯作者:
    Roman Krylov
Analysis of Reconstruction of Functions with Rough Edges from Discrete Radon Data in $${\mathbb {R}}^2$$
Analysis of reconstruction from noisy discrete generalized Radon data
噪声离散广义氡数据的重建分析
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Katsevich
  • 通讯作者:
    Alexander Katsevich

Alexander Katsevich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Katsevich', 18)}}的其他基金

Novel Resolution Analysis of Reconstruction Algorithms in Tomography
断层扫描重建算法的新颖分辨率分析
  • 批准号:
    1906361
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hilbert transform with incomplete data and applications in Tomography and Optics
不完整数据的希尔伯特变换及其在层析成像和光学中的应用
  • 批准号:
    1615124
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Mathematical Aspects of Interior Problem of Tomography
合作研究:层析成像内部问题的数学方面
  • 批准号:
    1211164
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Inversion of the Broken-Ray Radon Transform and Applications
合作研究:断射线氡变换反演及应用
  • 批准号:
    1115615
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel techniques for cardiac imaging
心脏成像新技术
  • 批准号:
    0806304
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
An Efficient Algorithm for Inversion of Truncated Spiral Cone Beam Data
截头螺旋锥束数据反演的一种高效算法
  • 批准号:
    0104033
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonclassical PDO and Some Practical Problems of Local Tomography
非经典PDO与局部层析成像的一些实际问题
  • 批准号:
    9704285
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Advanced Bayesian Inversion Algorithms for Wave Propagation
用于波传播的高级贝叶斯反演算法
  • 批准号:
    DP220102243
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Increasing Parameters of Phaseless Parametric Inversion Algorithms applied to Grain Bin Imaging
增加参数的无相参数反演算法应用于粮仓成像
  • 批准号:
    565371-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
  • 批准号:
    2012046
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Novel Microlocal-Analysis and Domain-Decomposition Based Fast Algorithms for Elastic Wave Modeling and Inversion in Variable Media
合作研究:基于新型微局域分析和域分解的快速算法,用于可变介质中的弹性波建模和反演
  • 批准号:
    2011843
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Inversion Algorithms for the Aerodynamic Aerosol Classifier with Applications
气动气溶胶分级器的反演算法及其应用
  • 批准号:
    RGPIN-2015-05822
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adjoint state method and numerical algorithms for full waveform inversion of seismic data
地震数据全波形反演伴随状态法与数值算法
  • 批准号:
    RGPIN-2014-04913
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Inversion Algorithms for the Aerodynamic Aerosol Classifier with Applications
气动气溶胶分级器的反演算法及其应用
  • 批准号:
    RGPIN-2015-05822
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Ptychographic inversion algorithms for intensity data in various experimental configurations.
各种实验配置中强度数据的叠层反演算法。
  • 批准号:
    2118882
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Inversion Algorithms for the Aerodynamic Aerosol Classifier with Applications
气动气溶胶分级器的反演算法及其应用
  • 批准号:
    RGPIN-2015-05822
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Inversion Algorithms for the Aerodynamic Aerosol Classifier with Applications
气动气溶胶分级器的反演算法及其应用
  • 批准号:
    477915-2015
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了