Nonlinear Dispersive Water Waves in Multiscale Interaction Problems
多尺度相互作用问题中的非线性色散水波
基本信息
- 批准号:1615480
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project contributes to a better understanding of various phenomena related to water waves. Of special interest are two problems that go beyond the classical setting of a homogeneous medium: (i) surface waves interacting with internal waves and (ii) surface waves interacting with rough topography. These two problems are of physical importance. In case (i), internal waves are large-amplitude waves that play a key role in many oceanic processes like mixing and energy dissipation, which impact the transport and diffusion of contaminants and nutrients. The strong currents associated with them also affect ocean acoustics, and present a potential hazard to offshore and submerged structures. In case (ii), the character of coastal wave dynamics is known to be very complex and can lead to extreme phenomena such as wave breaking. In turn, these wave phenomena influence many other coastal processes such as current generation and sediment transport which eventually drive sandbar formation and beach erosion. A detailed description of these two problems entails considerable mathematical challenges due to the complexity of the physical mechanisms involved. This project develops analytical and numerical tools that can help address a wide range of questions, ranging from theoretical to more practical ones (e.g., to improve the remote sensing of internal waves, the parameterization of wave forecasting models, and the design of wave energy farms in coastal regions). The project thus has broader impacts in oceanography, marine biology, coastal engineering, and climatology, which ultimately affect human activities, and also has far-reaching applications to wave problems in such diverse areas as material science that share similarities with the present ones. Graduate students are involved in the work of the project.The investigator studies wave-wave and wave-bottom interactions occurring at substantially disparate scales, which poses serious challenges to their asymptotic analysis and direct numerical simulation. More specifically, attention is paid to long internal waves resonantly coupled with smaller surface wavepackets in case (i), and to surface waves propagating over rapidly varying topography in case (ii). Such interactions produce complex dynamics such as wave localization and scattering, and a better understanding has important physical and technological implications. So far little effort has been devoted to examining these two problems analytically and in particular they still lack a mathematically justified asymptotic theory. The investigator develops building blocks for such a theory by deriving new reduced models that describe essential features of these nonlinear dispersive wave systems based on the large separation of scales. For this purpose, he develops new analytical methods from Hamiltonian systems and homogenization theory to deal with the multiple scales. Of special interest is the modulational regime for surface waves, in which the solution exhibits a two-scale dependence allowing for fast and slow dynamics. The latter can be described by an evolutionary partial differential equation (or a system of such equations), while the former can be determined by e.g. resonance conditions and their effects can be reproduced via effective coefficients in this equation. Together with the rapid progress in optical and imaging technologies, such models have the potential to improve the performance of remote sensing techniques for internal waves, and the subgrid parameterization of wave-bottom interactions that have so far been poorly represented in operational forecasting. Graduate students are involved in the work of the project.
该项目有助于更好地理解与水波相关的各种现象。 特别令人感兴趣的是超出均匀介质经典设置的两个问题:(i)表面波与内波相互作用,以及(ii)表面波与粗糙地形相互作用。 这两个问题具有重要的物理意义。 在情况(i)中,内波是大振幅波,在许多海洋过程中发挥关键作用,例如混合和能量耗散,影响污染物和营养物的运输和扩散。 与之相关的强流也会影响海洋声学,并对近海和水下结构造成潜在危害。 在情况(ii)中,众所周知,沿海波浪动力学的特征非常复杂,可能导致波浪破碎等极端现象。 反过来,这些波浪现象影响许多其他沿海过程,例如电流生成和沉积物输送,最终导致沙洲形成和海滩侵蚀。 由于所涉及的物理机制的复杂性,对这两个问题的详细描述需要相当大的数学挑战。 该项目开发的分析和数值工具可以帮助解决从理论到更实际的广泛问题(例如,改进内波遥感、波浪预报模型的参数化以及沿海地区波浪能发电场的设计)。 因此,该项目在海洋学、海洋生物学、海岸工程和气候学方面具有更广泛的影响,最终影响人类活动,并且在材料科学等与现有领域有相似之处的波浪问题方面也具有深远的应用。 研究生参与了该项目的工作。研究者研究了在截然不同的尺度上发生的波-波和波底相互作用,这对他们的渐近分析和直接数值模拟提出了严峻的挑战。 更具体地说,在情况(i)中,我们关注与较小表面波包共振耦合的长内波,以及在情况(ii)中,在快速变化的地形上传播的表面波。 这种相互作用会产生复杂的动力学,例如波局域化和散射,更好的理解具有重要的物理和技术意义。 到目前为止,很少有人致力于分析性地研究这两个问题,特别是它们仍然缺乏数学上合理的渐近理论。 研究人员通过推导新的简化模型来开发这种理论的构建模块,这些模型描述了基于大尺度分离的非线性色散波系统的基本特征。 为此,他从哈密顿系统和均质化理论中开发了新的分析方法来处理多尺度问题。 特别令人感兴趣的是表面波的调制机制,其中解表现出两尺度依赖性,允许快速和慢速动力学。 后者可以通过演化偏微分方程(或此类方程组)来描述,而前者可以通过例如共振条件及其影响可以通过该方程中的有效系数来重现。 随着光学和成像技术的快速进步,此类模型有可能提高内波遥感技术的性能,以及迄今为止在业务预测中表现不佳的波底相互作用的子网格参数化。 研究生参与该项目的工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Guyenne其他文献
A Flume Experiment on the Adjustment of the Mean and Turbulent Statistics to a Transition from Short to Tall Sparse Canopies
- DOI:
10.1007/s10546-008-9309-7 - 发表时间:
2008-09-13 - 期刊:
- 影响因子:2.200
- 作者:
Anthony Seraphin;Philippe Guyenne - 通讯作者:
Philippe Guyenne
A boundary perturbation method to simulate nonlinear deformations of a two-dimensional bubble
模拟二维气泡非线性变形的边界摄动方法
- DOI:
10.1016/j.ijmultiphaseflow.2024.104749 - 发表时间:
2024 - 期刊:
- 影响因子:3.8
- 作者:
Philippe Guyenne - 通讯作者:
Philippe Guyenne
Philippe Guyenne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Guyenne', 18)}}的其他基金
Hamiltonian formalism in wave turbulence problems
波湍流问题中的哈密顿形式主义
- 批准号:
2307712 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
相似海外基金
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
- 批准号:
2339212 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Large time behavior of solutions to nonlinear hyperbolic and dispersive equations with weakly dissipative structure
弱耗散结构非线性双曲和色散方程解的大时间行为
- 批准号:
22KJ2801 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.
可积色散偏微分方程中规则和随机孤子气体的分析。
- 批准号:
2307142 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
- 批准号:
2328459 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Multi-soliton Dynamics for Dispersive Partial Differential Equations
色散偏微分方程的多孤子动力学
- 批准号:
2247290 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
- 批准号:
2246908 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
On the Long Time Behavior of Nonlinear Dispersive Equations
非线性色散方程的长期行为
- 批准号:
2306429 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant














{{item.name}}会员




