Advanced Isogeometric Design-through-analysis Concepts

先进的等几何设计分析概念

基本信息

项目摘要

The central result of the my doctoral project is an isogeometric design-through-analysis methodology for three-dimensional solid structures described by T-spline CAD surfaces. It achieves all key benefits of isogeometric analysis, such as a seamless integration of the CAD geometry, no expensive mesh generation, and the use of smooth higher-order B-splines for the approximation of solution fields. The proposed project extends the present state of development by two important aspects: First, modern preconditioning techniques for strongly ill-conditioned systems of equations are studied to identify a suitable way to make the present approach accessible to efficient and easy-to-parallelize iterative solvers. Second, the isogeometric design-through-analysis methodology is combined with direct im-plicit time integration schemes for the solution of transient problems of structural dynamics. In addition, research is extended beyond my doctoral work to further advanced isogeometric concepts, in particular to isogeometric collocation and T-splines. The proposed project is carried out in collaboration with the group of Prof. Thomas J. R. Hughes at the Institute for Computational Engineering and Sciences (ICES) of the University of Texas at Austin. It continues the successful collaboration, which was initiated during my doctoral work at TUM, including a previous three month visit at ICES in summer 2011. With this proposal, I would like to apply for financial support for 6 months from June to November 2012
我的博士项目的中心成果是一个等几何设计,通过分析方法的三维实体结构所描述的T样条CAD表面。它实现了等几何分析的所有关键优势,例如CAD几何形状的无缝集成,无需昂贵的网格生成,以及使用光滑的高阶B样条近似解场。拟议的项目扩展了目前的发展状态的两个重要方面:第一,现代预处理技术的强病态方程组进行了研究,以确定一个合适的方式,使本方法访问高效,易于并行化的迭代求解器。其次,将等几何分析设计方法与直接隐式时间积分法相结合,求解结构动力学瞬态问题。此外,我的博士研究还扩展到更先进的等几何概念,特别是等几何配置和T样条。该项目是与托马斯教授的研究小组合作进行的。德克萨斯大学奥斯汀分校计算工程与科学研究所(ICES)的休斯说。它继续成功的合作,这是在我在TUM博士工作期间发起的,包括2011年夏天在ICES进行的为期三个月的访问。本人谨此提议,申请2012年6月至11月6个月的资助

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Dominik Schillinger其他文献

Professor Dr.-Ing. Dominik Schillinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Dominik Schillinger', 18)}}的其他基金

An integrative design-through-analysis paradigm for higher-order computational aerodynamics and aeroelasticity
高阶计算空气动力学和气动弹性的综合设计分析范式
  • 批准号:
    326309100
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Data-driven variational multiscale modeling of subgrid-scale effects in discontinuous Galerkin methods
不连续伽辽金方法中亚网格尺度效应的数据驱动变分多尺度建模
  • 批准号:
    528186504
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Eliminating spurious outlier frequencies and modes in IGA - strong and variational removal, outlier-free Bézier extraction, and advantages in explicit dynamics and nonlinear analysis
消除 IGA 中的杂散离群值频率和模式 - 强变分去除、无离群值贝塞尔提取以及显式动力学和非线性分析的优势
  • 批准号:
    490700327
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

CRII: OAC: Improved Cyberinfrastructure Usage through High-Fidelity Isogeometric Volumetric Spline Model Generation
CRII:OAC:通过高保真等几何体积样条模型生成改进网络基础设施的使用
  • 批准号:
    2245491
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Modelling hyperbolic and elliptic elasticity with discontinuous coefficients using an error driven adaptive isogeometric basis
使用误差驱动的自适应等几何基础对具有不连续系数的双曲和椭圆弹性进行建模
  • 批准号:
    EP/W023202/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
On new developments of Isogeometric Analysis (IGA) for highly accurate and efficient fracture mechanics analysis
等几何分析(IGA)的新发展,用于高精度和高效的断裂力学分析
  • 批准号:
    22K03879
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Local Mesh Refinement for Flow Analysis with Isogeometric Discretization and Topology Change
使用等几何离散化和拓扑变化进行流动分析的局部网格细化
  • 批准号:
    20K22401
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Aerodynamic Shape Optimization using Adaptive Refinement and Isogeometric Analysis
使用自适应细化和等几何分析进行空气动力学形状优化
  • 批准号:
    519591-2018
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Discontinuous Galerkin Isogeometric Analysis of Hyperbolic PDEs
双曲偏微分方程的不连续伽辽金等几何分析
  • 批准号:
    552071-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Aerodynamic Shape Optimization using Adaptive Refinement and Isogeometric Analysis
使用自适应细化和等几何分析进行空气动力学形状优化
  • 批准号:
    519591-2018
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了