Data-driven variational multiscale modeling of subgrid-scale effects in discontinuous Galerkin methods
不连续伽辽金方法中亚网格尺度效应的数据驱动变分多尺度建模
基本信息
- 批准号:528186504
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
For large eddy simulation based on a Galerkin formulation, the variational multiscale (VMS) method provides a mathematically rigorous basis for the construction of closure models, decomposing the solution space into a coarse-scale (finite element) approximation and an infinite dimensional fine-scale complement. Discontinuous Galerkin (DG) methods are particularly suitable for flow simulations due to their robustness, conservation properties, and higher-order accuracy. DG methods, however, have been incompatible with the VMS framework established to date due to their discontinuous basis and associated variational flux terms. We recently introduced a new VMS-DG framework that reconciles the discontinuous Galerkin approach with the variational multiscale method, based on a specific VMS fine-scale closure function. Each fine-scale closure function emerges as the solution of a variational fine-scale problem, but in contrast to the established fine-scale Green’s function naturally accounts for contributions across discontinuities and avoids tedious convolution. Moreover, we demonstrated for the advection-diffusion equation that unlike in continuous Galerkin methods, fine-scale closure functions in DG discretizations exhibit a highly localized support. In this project, we leverage this foundation to develop a new data-driven subgrid-scale modeling methodology in a DG framework. It is based on three central hypotheses: (1) Due to the localization of fine-scale closure functions, DG methods enable their accurate element-local modeling as approximate solutions of the variational fine-scale problem, also for the (incompressible) Navier-Stokes equations. (2) The computational challenge of solving a very large number of such fine-scale problems during run-time can be tackled by computing fine-scale closure solutions via modern data-driven model order reduction technology. (3) Due to the consistent (residual-based) VMS closure formulation, the data-driven methodology remains naturally intertwined with the governing equations (i.e. the physics) and can thus appropriately represents subgrid-scale effects in large eddy simulations. Our research program involves the extension of our new VMS-DG framework to the incompressible Navier-Stokes equations, the derivation and investigation of two modeling variants for localized fine-scale closure functions in a DG context, and the development of a nonlinear DEIM-coupled reduced basis method and its data-driven calibration to enable their practical computation via extremely efficient solution of variational fine-scale problems. The feasibility of the data-driven approach, its computational efficiency, and the accuracy of large eddy simulations that can be achieved through the element-local subgrid-scale model are tested via well-established benchmark problems.
对于基于Galerkin公式的大涡模拟,变分多尺度(VMS)方法为闭合模型的构造提供了严格的数学基础,将解空间分解为粗尺度(有限元)近似和无限维细尺度互补。不连续Galerkin(DG)方法因其稳健性、守恒性和高阶精度而特别适合于流动模拟。然而,由于其不连续的基础和相关的变分通量项,DG方法与迄今建立的VMS框架不兼容。我们最近介绍了一个新的VMS-DG框架,它基于一个特定的VMS精细闭包函数,协调了间断Galerkin方法和变分多尺度方法。每个细尺度闭合函数都是作为一个变分细尺度问题的解出现的,但与已建立的细尺度格林函数相比,格林函数自然地考虑了跨不连续面的贡献,并避免了繁琐的卷积。此外,对于对流扩散方程,我们证明了与连续Galerkin方法不同,DG离散中的细尺度闭包函数具有高度的局部化支持。在这个项目中,我们利用这一基础在DG框架中开发了一种新的数据驱动子网格规模的建模方法。它基于三个中心假设:(1)由于细尺度闭包函数的局部化,DG方法能够将其精确的单元局部模拟作为变分细尺度问题的近似解,也可以用于(不可压缩的)Navier-Stokes方程。(2)通过现代数据驱动的模型降阶技术计算精细闭包解,可以解决在运行时解决大量此类细微规模问题的计算挑战。(3)由于采用了一致的(基于残差的)VMS闭包形式,数据驱动的方法自然地与控制方程(即物理方程)交织在一起,因此可以在大涡模拟中适当地表示次网格尺度的效应。我们的研究计划包括将我们的新的VMS-DG框架扩展到不可压缩的Navier-Stokes方程,在DG背景下推导和研究局部精细闭包函数的两个模拟变量,以及发展非线性Deim耦合约化基方法及其数据驱动的校准,以使它们能够通过非常有效的变分精细问题的解来进行实际计算。通过建立良好的基准问题,验证了数据驱动方法的可行性、计算效率以及通过单元-局部亚格子尺度模式实现的大涡模拟的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Dominik Schillinger其他文献
Professor Dr.-Ing. Dominik Schillinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Dominik Schillinger', 18)}}的其他基金
An integrative design-through-analysis paradigm for higher-order computational aerodynamics and aeroelasticity
高阶计算空气动力学和气动弹性的综合设计分析范式
- 批准号:
326309100 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Advanced Isogeometric Design-through-analysis Concepts
先进的等几何设计分析概念
- 批准号:
224644310 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Fellowships
Eliminating spurious outlier frequencies and modes in IGA - strong and variational removal, outlier-free Bézier extraction, and advantages in explicit dynamics and nonlinear analysis
消除 IGA 中的杂散离群值频率和模式 - 强变分去除、无离群值贝塞尔提取以及显式动力学和非线性分析的优势
- 批准号:
490700327 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
-- - 项目类别:
SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
- 批准号:
DE240100269 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
- 批准号:
EP/Y002008/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
- 批准号:
2314075 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
- 批准号:
2338206 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant