Data-driven variational multiscale modeling of subgrid-scale effects in discontinuous Galerkin methods

不连续伽辽金方法中亚网格尺度效应的数据驱动变分多尺度建模

基本信息

项目摘要

For large eddy simulation based on a Galerkin formulation, the variational multiscale (VMS) method provides a mathematically rigorous basis for the construction of closure models, decomposing the solution space into a coarse-scale (finite element) approximation and an infinite dimensional fine-scale complement. Discontinuous Galerkin (DG) methods are particularly suitable for flow simulations due to their robustness, conservation properties, and higher-order accuracy. DG methods, however, have been incompatible with the VMS framework established to date due to their discontinuous basis and associated variational flux terms. We recently introduced a new VMS-DG framework that reconciles the discontinuous Galerkin approach with the variational multiscale method, based on a specific VMS fine-scale closure function. Each fine-scale closure function emerges as the solution of a variational fine-scale problem, but in contrast to the established fine-scale Green’s function naturally accounts for contributions across discontinuities and avoids tedious convolution. Moreover, we demonstrated for the advection-diffusion equation that unlike in continuous Galerkin methods, fine-scale closure functions in DG discretizations exhibit a highly localized support. In this project, we leverage this foundation to develop a new data-driven subgrid-scale modeling methodology in a DG framework. It is based on three central hypotheses: (1) Due to the localization of fine-scale closure functions, DG methods enable their accurate element-local modeling as approximate solutions of the variational fine-scale problem, also for the (incompressible) Navier-Stokes equations. (2) The computational challenge of solving a very large number of such fine-scale problems during run-time can be tackled by computing fine-scale closure solutions via modern data-driven model order reduction technology. (3) Due to the consistent (residual-based) VMS closure formulation, the data-driven methodology remains naturally intertwined with the governing equations (i.e. the physics) and can thus appropriately represents subgrid-scale effects in large eddy simulations. Our research program involves the extension of our new VMS-DG framework to the incompressible Navier-Stokes equations, the derivation and investigation of two modeling variants for localized fine-scale closure functions in a DG context, and the development of a nonlinear DEIM-coupled reduced basis method and its data-driven calibration to enable their practical computation via extremely efficient solution of variational fine-scale problems. The feasibility of the data-driven approach, its computational efficiency, and the accuracy of large eddy simulations that can be achieved through the element-local subgrid-scale model are tested via well-established benchmark problems.
对于基于Galerkin公式的大涡模拟,变分多尺度(VMS)方法为闭合模型的构造提供了严格的数学基础,将解空间分解为粗尺度(有限元)近似和无限维细尺度互补。不连续Galerkin(DG)方法因其稳健性、守恒性和高阶精度而特别适合于流动模拟。然而,由于其不连续的基础和相关的变分通量项,DG方法与迄今建立的VMS框架不兼容。我们最近介绍了一个新的VMS-DG框架,它基于一个特定的VMS精细闭包函数,协调了间断Galerkin方法和变分多尺度方法。每个细尺度闭合函数都是作为一个变分细尺度问题的解出现的,但与已建立的细尺度格林函数相比,格林函数自然地考虑了跨不连续面的贡献,并避免了繁琐的卷积。此外,对于对流扩散方程,我们证明了与连续Galerkin方法不同,DG离散中的细尺度闭包函数具有高度的局部化支持。在这个项目中,我们利用这一基础在DG框架中开发了一种新的数据驱动子网格规模的建模方法。它基于三个中心假设:(1)由于细尺度闭包函数的局部化,DG方法能够将其精确的单元局部模拟作为变分细尺度问题的近似解,也可以用于(不可压缩的)Navier-Stokes方程。(2)通过现代数据驱动的模型降阶技术计算精细闭包解,可以解决在运行时解决大量此类细微规模问题的计算挑战。(3)由于采用了一致的(基于残差的)VMS闭包形式,数据驱动的方法自然地与控制方程(即物理方程)交织在一起,因此可以在大涡模拟中适当地表示次网格尺度的效应。我们的研究计划包括将我们的新的VMS-DG框架扩展到不可压缩的Navier-Stokes方程,在DG背景下推导和研究局部精细闭包函数的两个模拟变量,以及发展非线性Deim耦合约化基方法及其数据驱动的校准,以使它们能够通过非常有效的变分精细问题的解来进行实际计算。通过建立良好的基准问题,验证了数据驱动方法的可行性、计算效率以及通过单元-局部亚格子尺度模式实现的大涡模拟的准确性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Dominik Schillinger其他文献

Professor Dr.-Ing. Dominik Schillinger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Dominik Schillinger', 18)}}的其他基金

An integrative design-through-analysis paradigm for higher-order computational aerodynamics and aeroelasticity
高阶计算空气动力学和气动弹性的综合设计分析范式
  • 批准号:
    326309100
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Advanced Isogeometric Design-through-analysis Concepts
先进的等几何设计分析概念
  • 批准号:
    224644310
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Eliminating spurious outlier frequencies and modes in IGA - strong and variational removal, outlier-free Bézier extraction, and advantages in explicit dynamics and nonlinear analysis
消除 IGA 中的杂散离群值频率和模式 - 强变分去除、无离群值贝塞尔提取以及显式动力学和非线性分析的优势
  • 批准号:
    490700327
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
  • 批准号:
    10099966
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
  • 批准号:
    10113920
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    SME Support
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
  • 批准号:
    DP240101727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
  • 批准号:
    DP240100102
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Maintaining Human Expertise in an AI-driven World
在人工智能驱动的世界中保持人类的专业知识
  • 批准号:
    DE240100269
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
  • 批准号:
    EP/Y002008/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: CAS: Organic Photochemistry for Light-Driven CO2 Capture and Release
职业:CAS:光驱动二氧化碳捕获和释放的有机光化学
  • 批准号:
    2338206
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了