RI: Small: RUI: Synthesis of Robust Artificial Systems by Adaptive Genetic Programming
RI:小型:RUI:通过自适应遗传编程合成稳健的人工系统
基本信息
- 批准号:1617087
- 负责人:
- 金额:$ 41.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer-based problem-solving systems are revolutionizing many areas of science and engineering, with pervasive impacts on economic activity, human health, national security, and the advancement of science. Several of the most powerful and promising approaches to the development of these systems borrow ideas from biology, for example, when artificial neural networks are used to enable computer systems to learn. The processes of random variation and fitness-based selection motivated by biology have been particularly useful in several applications, but they have not yet produced the kind of radical innovations that are characteristic of living systems. In this project, key elements of genetic programming, such as the processes governing variation, will themselves be allowed to adapt, with the aim of producing more powerful problem-solving computer systems. These systems may have applications in several areas of science and engineering. The project will be conducted in the context of educational activities that integrate research and education across undergraduate and graduate levels, thereby providing training to a new generation of computational scientists. The primary goal of the proposed project is to enhance genetic programming technologies in ways that will allow them to more routinely produce more innovative solutions to difficult problems, and to produce systems that perform well in complex environments. The central hypothesis underlying this effort is that the innovating power of biology, and the power of biology to produce robust systems, stems in part from the fact that the adaptive mechanisms of biology themselves adapt. Self-adaptive genetic programming systems, in which the algorithms for variation and selection are themselves subject to variation and selection, have been explored for decades but have only recently begun to show practical promise for solving difficult problems. The proposed project will begin with a promising system of this type and will test it systematically, in order to elucidate general principles that will then be used to develop and apply more refined, adaptive algorithms. Applications ranging from the automatic programming of exercises in a first-semester programming textbook to the development of multicellular organisms in a virtual ecosystem will be used to test and demonstrate the systems developed in this project.
基于计算机的问题解决系统正在彻底改变科学和工程的许多领域,对经济活动、人类健康、国家安全和科学进步产生普遍影响。开发这些系统的几种最强大和最有前途的方法借鉴了生物学的思想,例如,当使用人工神经网络使计算机系统能够学习时。由生物学推动的随机变异和基于适应性的选择过程在一些应用中特别有用,但它们尚未产生生命系统特有的那种彻底的创新。在这个项目中,遗传编程的关键要素,例如控制变异的过程,本身将被允许适应,目的是产生更强大的解决问题的计算机系统。这些系统可能在科学和工程的多个领域都有应用。该项目将在整合本科生和研究生水平的研究和教育的教育活动背景下进行,从而为新一代计算科学家提供培训。拟议项目的主要目标是增强遗传编程技术,使它们能够更常规地为难题提供更具创新性的解决方案,并产生在复杂环境中表现良好的系统。这项工作的核心假设是,生物学的创新能力,以及生物学产生强大系统的能力,部分源于生物学本身的适应性机制这一事实。自适应遗传编程系统,其中变异和选择的算法本身也受到变异和选择的影响,已经被探索了几十年,但直到最近才开始显示出解决难题的实际前景。拟议的项目将从此类有前途的系统开始,并对它进行系统测试,以阐明一般原则,然后将这些原则用于开发和应用更精细的自适应算法。从第一学期编程教科书中练习的自动编程到虚拟生态系统中多细胞生物的开发等应用程序将用于测试和演示该项目中开发的系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Spector其他文献
Expressive genetic programming: tutorial: 2012 genetic and evolutionary computation conference (GECCO-2012)
表达性遗传编程:教程:2012 年遗传与进化计算会议 (GECCO-2012)
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lee Spector - 通讯作者:
Lee Spector
Objectives Are All You Need: Solving Deceptive Problems Without Explicit Diversity Maintenance
您所需要的就是目标:在没有明确的多样性维护的情况下解决欺骗性问题
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ryan Boldi;Lijie Ding;Lee Spector - 通讯作者:
Lee Spector
Relationships between parent selection methods, looping constructs, and success rate in genetic programming
- DOI:
10.1007/s10710-021-09417-5 - 发表时间:
2021-09-30 - 期刊:
- 影响因子:0.900
- 作者:
Anil Kumar Saini;Lee Spector - 通讯作者:
Lee Spector
Pareto-Optimal Learning from Preferences with Hidden Context
从具有隐藏上下文的偏好中进行帕累托最优学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ryan Boldi;Lijie Ding;Lee Spector;S. Niekum - 通讯作者:
S. Niekum
Introduction to the peer commentary special section on “On the Mapping of Genotype to Phenotype in Evolutionary Algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin
- DOI:
10.1007/s10710-017-9287-y - 发表时间:
2017-02-23 - 期刊:
- 影响因子:0.900
- 作者:
Lee Spector - 通讯作者:
Lee Spector
Lee Spector的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Spector', 18)}}的其他基金
BSF:2012144:Human-Competitive Evolutionary Computation
BSF:2012144:人类竞争进化计算
- 批准号:
1331283 - 财政年份:2013
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
UBM-Institutional-Collaborative Research: Four College Biomath Consortium
UBM-机构合作研究:四所大学生物数学联盟
- 批准号:
1129139 - 财政年份:2011
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: Evolution of Robustly Intelligent Computational Systems
RI:小型:RUI:鲁棒智能计算系统的演变
- 批准号:
1017817 - 财政年份:2010
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
The Computational Creativity Curriculum
计算创造力课程
- 批准号:
0749184 - 财政年份:2008
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
Open-Ended Evolution in Visually Rich Virtual Worlds: Implementation, Analysis, and Use in Undergraduate Education
视觉丰富的虚拟世界中的开放式进化:本科教育中的实施、分析和使用
- 批准号:
0308540 - 财政年份:2003
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
MRI/RUI: Acquisition of Instrumentation for Research in Genetic Programming, Quantum Computation, and Distributed Systems
MRI/RUI:采购用于基因编程、量子计算和分布式系统研究的仪器
- 批准号:
0216344 - 财政年份:2002
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
RI: Small: Collaborative Research: RUI: Influence Games: A Game-Theoretic Approach to Strategic Behavior in Networks
RI:小型:协作研究:RUI:影响游戏:网络中战略行为的博弈论方法
- 批准号:
1910203 - 财政年份:2019
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: Automated Reasoning about Time -- Methods and Analysis
RI:小:RUI:关于时间的自动推理——方法与分析
- 批准号:
1909739 - 财政年份:2019
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: RUI: Scalable Decentralized Planning in Open Multiagent Environments
RI:小型:协作研究:RUI:开放多代理环境中的可扩展去中心化规划
- 批准号:
1909513 - 财政年份:2019
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: Benchmarks and Algorithms for Mobile Image Matching
RI:小型:RUI:移动图像匹配的基准和算法
- 批准号:
1718376 - 财政年份:2017
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: Fission-Fusion Multi-Robot Systems
RI:小型:RUI:裂变融合多机器人系统
- 批准号:
1617838 - 财政年份:2016
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: RUI: Batch Learning from Logged Bandit Feedback
RI:小型:协作研究:RUI:从记录的强盗反馈中批量学习
- 批准号:
1615679 - 财政年份:2016
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: Multi-Robot Systems for Tracking, Monitoring, and Modeling of Periodic Migratory Populations
RI:小型:RUI:用于定期迁徙种群跟踪、监控和建模的多机器人系统
- 批准号:
1423620 - 财政年份:2014
- 资助金额:
$ 41.89万 - 项目类别:
Continuing Grant
RI: Small: RUI: Image Matching in the Wild
RI:小:RUI:野外图像匹配
- 批准号:
1320715 - 财政年份:2013
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: AIR: Automatic Idiom Recognition
RI:小:RUI:AIR:自动成语识别
- 批准号:
1319846 - 财政年份:2013
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant
RI: Small: RUI: Shark Tracking with Multiple Autonomous Underwater Vehicles
RI:小型:RUI:使用多个自主水下航行器跟踪鲨鱼
- 批准号:
1245813 - 财政年份:2012
- 资助金额:
$ 41.89万 - 项目类别:
Standard Grant














{{item.name}}会员




