III: Small: A New Approach to Latent Space Learning with Diversity-Inducing Regularization and Applications to Healthcare Data Analytics
III:小型:具有多样性诱导正则化的潜在空间学习新方法及其在医疗保健数据分析中的应用
基本信息
- 批准号:1617583
- 负责人:
- 金额:$ 49.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Latent variable models (LVMs), which extract hidden information, such as topics, themes, or disease patterns, from raw data, play an important role in electronic health record (EHR) management and applications. With the dramatic increase of the volume and complexity of EHR data, current LVMs face several new challenges, including inadequacy in capturing rare patterns existing in only small number of patients in a population (also known as long tail patterns), redundancy amongst patterns being discovered, and low computational efficiency, which all seriously impair the value of EHR data in driving high-quality personalized medicine. There is a critical need in developing new methods to transform conventional LVMs to ones that can circumvent such limitations so that the EHR data can be more effectively and reliably used for healthcare applications. This project addresses this need and develops a new technique known as "diversity-inducing machine learning models", which promote rare patterns and condense redundant patterns, at high computational efficiency, to enable more effective pattern discovery and knowledge extraction from complex and heterogeneous (e.g., textual, image, and time series) EHR data. Specifically, this project contains the following research components: 1. Develop a new regularized LVM learning framework that allows the basis of the latent space to favor a more diversity-inducing geometry and less redundancy, thereby accomplish long-tail pattern coverage and better interpretability for both Euclidean and Hilbert space settings. 2. Develop a diversity-promoting Bayesian LVM learning framework that enables efficient inference of posteriors probability distributions to facilitate quantization of uncertainty and alleviate over fitting. 3. Theoretically analyze the diversity-inducing techniques proposed in 1 and 2 to understand how these techniques affect the generalization errors in supervised LVMs, posterior contraction rate in unsupervised LVMs, and the information geometry of the distributions induced by LVMs. 4. Apply the diversified LVMs to healthcare applications. This project also provides rich opportunities for multi-disciplinary education and research training, at both undergraduate, graduate, and professional levels.
潜在变量模型(lvm)从原始数据中提取隐藏信息,如主题、主题或疾病模式,在电子健康记录(EHR)管理和应用程序中发挥着重要作用。随着电子病历数据量和复杂性的急剧增加,当前的lvm面临着一些新的挑战,包括无法捕获人群中少数患者存在的罕见模式(也称为长尾模式),发现的模式之间存在冗余,计算效率低下,这些都严重影响了电子病历数据在推动高质量个性化医疗中的价值。迫切需要开发新方法,将传统lvm转换为能够规避此类限制的lvm,以便更有效、更可靠地将EHR数据用于医疗保健应用程序。该项目解决了这一需求,并开发了一种被称为“多样性诱导机器学习模型”的新技术,该技术以高计算效率促进稀有模式和浓缩冗余模式,从而从复杂和异构(例如文本、图像和时间序列)的电子病历数据中实现更有效的模式发现和知识提取。具体而言,本项目包含以下研究组成部分:1。开发一个新的正则化LVM学习框架,允许潜在空间的基础倾向于更多的多样性诱导几何和更少的冗余,从而实现长尾模式覆盖和更好的欧几里得和希尔伯特空间设置的可解释性。2. 开发一个促进多样性的贝叶斯LVM学习框架,能够有效地推断后验概率分布,以促进不确定性的量化和缓解过度拟合。3. 从理论上分析1和2中提出的多样性诱导技术,了解这些技术如何影响有监督lvm的泛化误差、无监督lvm的后验收缩率以及lvm诱导的分布的信息几何形状。4. 将各种lvm应用于医疗保健应用程序。该项目还为本科生、研究生和专业水平的多学科教育和研究培训提供了丰富的机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Xing其他文献
What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions
您的数据对 GPT 有何价值?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sang Keun Choe;Hwijeen Ahn;Juhan Bae;Kewen Zhao;Minsoo Kang;Youngseog Chung;Adithya Pratapa;W. Neiswanger;Emma Strubell;Teruko Mitamura;Jeff Schneider;Eduard Hovy;Roger Grosse;Eric Xing - 通讯作者:
Eric Xing
Applications of artificial intelligence in public health: analyzing the built environment and addressing spatial inequities
- DOI:
10.1007/s10389-025-02444-x - 发表时间:
2025-03-19 - 期刊:
- 影响因子:1.600
- 作者:
Ana Luiza Favarão Leão;Bernard Banda;Eric Xing;Sanketh Gudapati;Adeel Ahmad;Jonathan Lin;Srikumar Sastry;Nathan Jacobs;Rodrigo Siqueira Reis - 通讯作者:
Rodrigo Siqueira Reis
An exploratory study of self-supervised pre-training on partially supervised multi-label classification on chest X-ray images
胸部X射线图像部分监督多标签分类自监督预训练的探索性研究
- DOI:
10.1016/j.asoc.2024.111855 - 发表时间:
2024 - 期刊:
- 影响因子:8.7
- 作者:
Nanqing Dong;Michael Kampffmeyer;Haoyang Su;Eric Xing - 通讯作者:
Eric Xing
Eric Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Xing', 18)}}的其他基金
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
ML Basis for Intelligence Augmentation:Toward Personalized Modeling, Reasoning under Data-Knowledge Symbiosis, and Interpretable Interaction for AI-assisted Human Decision-making
智能增强的机器学习基础:面向人工智能辅助人类决策的个性化建模、数据知识共生下的推理和可解释的交互
- 批准号:
2040381 - 财政年份:2021
- 资助金额:
$ 49.94万 - 项目类别:
Continuing Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
- 批准号:
2123952 - 财政年份:2021
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Globally-Optimal Resource Distribution and Computation Acceleration in Multi-Tenant and Heterogeneous Machine Learning Systems
CNS 核心:小型:在多租户和异构机器学习系统中实现全局最优资源分配和计算加速
- 批准号:
2008248 - 财政年份:2020
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
XPS: FULL: Broad-Purpose, Aggressively Asynchronous and Theoretically Sound Parallel Large-scale Machine Learning
XPS:FULL:用途广泛、积极异步且理论上合理的并行大规模机器学习
- 批准号:
1629559 - 财政年份:2016
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Theory and Algorithms for Parallel Probabilistic Inference with Big Data, via Big Model, in Realistic Distributed Computing Environments
BIGDATA:F:DKA:协作研究:在现实分布式计算环境中通过大模型进行大数据并行概率推理的理论和算法
- 批准号:
1447676 - 财政年份:2014
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
- 批准号:
1218282 - 财政年份:2012
- 资助金额:
$ 49.94万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Using Large-Scale Image Data for Online Social Media Analysis
III:小:协作研究:使用大规模图像数据进行在线社交媒体分析
- 批准号:
1115313 - 财政年份:2011
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: Discovering and Exploiting Latent Communities in Social Media
协作研究:发现和利用社交媒体中的潜在社区
- 批准号:
1111142 - 财政年份:2011
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Indexing, Mining and Modeling Spatio-Temporal Patterns of Gene Expressions
基因表达时空模式的索引、挖掘和建模
- 批准号:
0640543 - 财政年份:2007
- 资助金额:
$ 49.94万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
SHF: SMALL: A New Semantics for Type-Level Programming in Haskell
SHF:SMALL:Haskell 中类型级编程的新语义
- 批准号:
2345580 - 财政年份:2024
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
- 批准号:
2332891 - 财政年份:2024
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402572 - 财政年份:2024
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342245 - 财政年份:2024
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Connections between Optimization and Property Testing
合作研究:AF:小型:优化和性能测试之间的新联系
- 批准号:
2402571 - 财政年份:2024
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Understanding the Limitations of Wireless Network Security Designs Leveraging Wireless Properties: New Threats and Defenses in Practice
协作研究:SaTC:核心:小型:了解利用无线特性的无线网络安全设计的局限性:实践中的新威胁和防御
- 批准号:
2316720 - 财政年份:2023
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 49.94万 - 项目类别:
Standard Grant
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 49.94万 - 项目类别:
Continuing Grant














{{item.name}}会员




