ML Basis for Intelligence Augmentation:Toward Personalized Modeling, Reasoning under Data-Knowledge Symbiosis, and Interpretable Interaction for AI-assisted Human Decision-making
智能增强的机器学习基础:面向人工智能辅助人类决策的个性化建模、数据知识共生下的推理和可解释的交互
基本信息
- 批准号:2040381
- 负责人:
- 金额:$ 73.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of the work people do today—in healthcare, business, scientific enterprises, and military operations—is performed in teams. Collaborative decision-making effort within a team is a complex and challenging process of integrating, understanding, and acting upon different types of information. This project aims to advance the use of artificial intelligence and machine learning as intelligence augmentation (IA) tools for facilitating and improving collaborative decision making in clinical teams, focusing on AI-assisted diagnosis and treatment. The focus of the investigators reflects the practical importance and impact of IA in healthcare, especially in the on-going fight with the pandemic where efficiency, validity, and cost-effectiveness of medical decision-making is critical. However, the proposed methods will apply to other forms and use-cases of IA, such as policy making, public health responses, intelligence and business operations, ultimately advancing national health, prosperity, and welfare.Although modern machine learning research has been widely involved in solving various pattern discovery and recognition tasks based on a wide spectrum of data—either in a fully autonomous fashion or in rudimentary human-AI collaborative settings such as crowdsourcing—effectively augmenting and assisting complex collaborative human decision-making efforts in the space of diagnosis, treatment, planning, logistics remains to be an open challenge. In clinical decision- making, understanding and treating the disease must rely on the vast knowledge and expertise and be based on evidence coming from heterogeneous sources of information, ranging from text (medical history), to imagery (radiograms), to time series data (vitals). Making sense of such multimodal information requires effective communication and collaboration within clinical teams. The investigators propose to study some of the key technical challenges in machine learning for IA: (1) modeling human decision-making processes; (2) incorporating background knowledge into data-driven systems; and (3) building human-AI interface for productive inter- and intra-team collaboration. To that end, the investigators will: (1) develop a machine learning framework based on modeling individual decision-makers that enables accurate detection of errors in medical diagnosis and can be used as a recommendation engine in collaborative decision-making settings; (2) develop principled strategies for integrating objective medical knowledge (e.g., automatically extracted from rapidly growing medical literature) with the clinical experience and expertise of a team of health professionals; (3) design human-interpretable interfaces that enable efficient communication in decision making within and across teams, including new tools for interpreting how the models arrived at each recommended decision and natural language interfaces that can facilitate human-AI collaboration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天人们所做的许多工作--在医疗保健、商业、科学企业和军事行动中--都是在团队中完成的。团队中的协作决策是一个复杂而具有挑战性的过程,需要整合、理解和处理不同类型的信息。该项目旨在推进人工智能和机器学习作为智能增强(IA)工具的使用,以促进和改善临床团队的协作决策,重点是AI辅助诊断和治疗。研究人员的关注点反映了IA在医疗保健中的实际重要性和影响,特别是在与大流行的持续斗争中,医疗决策的效率,有效性和成本效益至关重要。然而,所提出的方法将适用于IA的其他形式和用例,例如政策制定,公共卫生响应,情报和商业运营,最终促进国家健康,繁荣,虽然现代机器学习研究已经广泛参与解决基于广泛数据的各种模式发现和识别任务-无论是以完全自主的方式还是以基本的人类-人工智能协作环境,如众包,有效地增强和协助诊断,治疗,规划,物流领域的复杂协作人类决策工作仍然是一个开放的挑战。在临床决策中,理解和治疗疾病必须依赖于大量的知识和专业知识,并基于来自不同信息来源的证据,从文本(病史)到图像(放射照片),再到时间序列数据(生命体征)。理解这种多模态信息需要在临床团队中进行有效的沟通和协作。研究人员建议研究IA机器学习中的一些关键技术挑战:(1)对人类决策过程进行建模;(2)将背景知识纳入数据驱动系统;(3)为团队间和团队内的高效协作构建人机界面。为此,研究人员将:(1)开发一个基于对个体决策者建模的机器学习框架,该框架能够准确检测医疗诊断中的错误,并可用作协作决策环境中的推荐引擎;(2)开发整合客观医学知识的原则性策略(例如,从快速增长的医学文献中自动提取),具有医疗专业人员团队的临床经验和专业知识;(3)设计人类可理解的界面,使团队内部和团队之间的决策能够有效沟通,包括解释模型如何得出每个建议决策的新工具,以及可以促进人类-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Xing其他文献
What is Your Data Worth to GPT? LLM-Scale Data Valuation with Influence Functions
您的数据对 GPT 有何价值?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sang Keun Choe;Hwijeen Ahn;Juhan Bae;Kewen Zhao;Minsoo Kang;Youngseog Chung;Adithya Pratapa;W. Neiswanger;Emma Strubell;Teruko Mitamura;Jeff Schneider;Eduard Hovy;Roger Grosse;Eric Xing - 通讯作者:
Eric Xing
Applications of artificial intelligence in public health: analyzing the built environment and addressing spatial inequities
- DOI:
10.1007/s10389-025-02444-x - 发表时间:
2025-03-19 - 期刊:
- 影响因子:1.600
- 作者:
Ana Luiza Favarão Leão;Bernard Banda;Eric Xing;Sanketh Gudapati;Adeel Ahmad;Jonathan Lin;Srikumar Sastry;Nathan Jacobs;Rodrigo Siqueira Reis - 通讯作者:
Rodrigo Siqueira Reis
An exploratory study of self-supervised pre-training on partially supervised multi-label classification on chest X-ray images
胸部X射线图像部分监督多标签分类自监督预训练的探索性研究
- DOI:
10.1016/j.asoc.2024.111855 - 发表时间:
2024 - 期刊:
- 影响因子:8.7
- 作者:
Nanqing Dong;Michael Kampffmeyer;Haoyang Su;Eric Xing - 通讯作者:
Eric Xing
Eric Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Xing', 18)}}的其他基金
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
- 批准号:
2311990 - 财政年份:2023
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
- 批准号:
2123952 - 财政年份:2021
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
CNS Core: Small: Toward Globally-Optimal Resource Distribution and Computation Acceleration in Multi-Tenant and Heterogeneous Machine Learning Systems
CNS 核心:小型:在多租户和异构机器学习系统中实现全局最优资源分配和计算加速
- 批准号:
2008248 - 财政年份:2020
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
III: Small: A New Approach to Latent Space Learning with Diversity-Inducing Regularization and Applications to Healthcare Data Analytics
III:小型:具有多样性诱导正则化的潜在空间学习新方法及其在医疗保健数据分析中的应用
- 批准号:
1617583 - 财政年份:2016
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
XPS: FULL: Broad-Purpose, Aggressively Asynchronous and Theoretically Sound Parallel Large-scale Machine Learning
XPS:FULL:用途广泛、积极异步且理论上合理的并行大规模机器学习
- 批准号:
1629559 - 财政年份:2016
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
BIGDATA: F: DKA: Collaborative Research: Theory and Algorithms for Parallel Probabilistic Inference with Big Data, via Big Model, in Realistic Distributed Computing Environments
BIGDATA:F:DKA:协作研究:在现实分布式计算环境中通过大模型进行大数据并行概率推理的理论和算法
- 批准号:
1447676 - 财政年份:2014
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Efficient, Nonparametric and Local-Minimum-Free Latent Variable Models: With Application to Large-Scale Computer Vision and Genomics
III:小型:协作研究:高效、非参数和局部最小自由潜变量模型:应用于大规模计算机视觉和基因组学
- 批准号:
1218282 - 财政年份:2012
- 资助金额:
$ 73.89万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Using Large-Scale Image Data for Online Social Media Analysis
III:小:协作研究:使用大规模图像数据进行在线社交媒体分析
- 批准号:
1115313 - 财政年份:2011
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
Collaborative Research: Discovering and Exploiting Latent Communities in Social Media
协作研究:发现和利用社交媒体中的潜在社区
- 批准号:
1111142 - 财政年份:2011
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
Indexing, Mining and Modeling Spatio-Temporal Patterns of Gene Expressions
基因表达时空模式的索引、挖掘和建模
- 批准号:
0640543 - 财政年份:2007
- 资助金额:
$ 73.89万 - 项目类别:
Continuing Grant
相似国自然基金
基于Volatility Basis-set方法对上海大气二次有机气溶胶生成的模拟
- 批准号:41105102
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
求解Basis Pursuit问题的数值优化方法
- 批准号:11001128
- 批准年份:2010
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An Investigation of the Physiological Basis of Curiosity in Young Children and Adults
幼儿和成人好奇心生理基础的调查
- 批准号:
ES/Y007611/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Fellowship
The molecular basis of T cell receptor cross-reactivity between MHC and MR1
MHC 和 MR1 之间 T 细胞受体交叉反应的分子基础
- 批准号:
DP240102905 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Discovery Projects
Understanding the neural basis of hearing function and dysfunction in vivo.
了解体内听力功能和功能障碍的神经基础。
- 批准号:
BB/Y000374/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Research Grant
Defining the molecular basis of chloroplast transcription of photosynthetic genes
定义光合基因叶绿体转录的分子基础
- 批准号:
BB/Y003802/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Research Grant
The mechanistic basis of slow-fast phenotypic diversity and its functional and evolutionary significance in social groups
慢-快表型多样性的机制基础及其在社会群体中的功能和进化意义
- 批准号:
2241230 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
- 批准号:
BB/Y003772/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Research Grant
The molecular basis of viral tolerance in bats
蝙蝠病毒耐受的分子基础
- 批准号:
BB/Y005473/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Research Grant
Investigating the molecular basis of basement membrane specialisation and basal surface organisation during epithelial tissue development
研究上皮组织发育过程中基底膜特化和基底表面组织的分子基础
- 批准号:
MR/Y012089/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Research Grant
Conference: New horizons in language science: large language models, language structure, and the neural basis of language
会议:语言科学的新视野:大语言模型、语言结构和语言的神经基础
- 批准号:
2418125 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Standard Grant
Trustworthy Distributed Brain-inspired Systems: Theoretical Basis and Hardware Implementation
值得信赖的分布式类脑系统:理论基础和硬件实现
- 批准号:
EP/Y03631X/1 - 财政年份:2024
- 资助金额:
$ 73.89万 - 项目类别:
Research Grant














{{item.name}}会员




