SHF: Small: Collaborative Research: Coupling Computation and Communication in FPGA-Enhanced Clouds and Clusters

SHF:小型:协作研究:FPGA 增强型云和集群中的耦合计算和通信

基本信息

  • 批准号:
    1618303
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

The introduction of Field Programmable Gate Arrays (FPGAs) to accelerate clusters of servers in datacenters and clouds provides a great, immediate opportunity to leverage a new technology in high-end computing. With their flexible logic and native massive communication capability, FPGAs are ideal for high-performance computing in the post-Moore?s Law world. Since the hardware adapts to the application higher efficiency can be achieved, and since FPGAs are hybrid communication/computation processors, they can be interconnected directly chip-to-chip. Large-scale communication can consequently proceed with both higher bandwidth, lower latency, and less processor impact. These features are crucial to enhancing performance beyond current levels. The proposed design allows for useful processing while data is in flight in the network resulting in reduced software overhead in parallel middleware and reduced network congestion. The key tenets of the research are to achieve programmable, intelligent acceleration of applications while emphasizing overlap of communication and computation at low latency, while also cutting substantially software overhead. The research project, FC5 (an FPGA framework for coupling communication and computation in clouds and clusters) has several thrusts. First, hardware support for FC5 and investigation of methods of configurability in FC5 to reduce communication latency and support computing in the network are studied. A second outcome is a prototype version of the Open MPI open source version of MPI-3.1 parallel middleware that utilizes FC5 to deliver the features and performance enhancements involving data movement between and within servers, mathematical data reductions, and bulk data reorganizations. Third, proof-of-concept versions of multiple FC5 software models, including direct hardware access, a transparent MPI-in-OpenCL, and an API-based mechanism that exposes essential functionality. Finally, because FC5 is evolving rapidly with major new announcements expected imminently, continued refinement is essential. At least two model applications, Molecular Dynamics and Map-Reduce, will be used as test cases. With the continued consolidation of computing services into the cloud, the potential broader impact is to increase both the scale and availability of parallel applications. The broad range of uses of cloud and cluster computing for commercial, government, and academic applications means that acceleration offered will have a widespread impact applicable across many sectors. The growing acceptance of high performance computing in industry (e.g., fast machine learning) is one particular potential commercial sector that will be enhanced by this project.
引入现场可编程栅极阵列(FPGA)来加速数据中心和云中的服务器簇,这为在高端计算中利用新技术提供了一个很好的直接机会。 FPGA凭借其灵活的逻辑和本地大规模的沟通能力,非常适合在后月经后的法律世界中进行高性能计算。由于硬件适应应用程序可以提高效率,并且FPGA是混合通信/计算处理器,因此可以直接互连芯片到芯片。因此,大规模沟通可以通过更高的带宽,较低的潜伏期和更少的处理器影响进行。这些功能对于提高超出当前水平的性能至关重要。所提出的设计允许在网络中数据中的数据中进行有用的处理,从而导致并行中间件中的软件开销减少并减少网络拥塞。研究的主要原则是实现可编程,智能加速应用程序,同时强调低潜伏期的通信和计算重叠,同时还将大量的软件开销。研究项目FC5(用于云和集群中耦合通信和计算的FPGA框架)有多个推力。首先,研究了针对FC5的硬件支持以及研究FC5中可配置的方法,以减少网络中的通信延迟和支持计算。第二个结果是MPI 3.1平行中间件的开放MPI开源版本的原型版本,该版本利用FC5来提供涉及服务器之间和内部数据移动的功能和性能增强功能,数学数据减少以及批量数据重组。第三,多个FC5软件模型的概念验证版本,包括直接硬件访问,透明的MPI-In-Opencl和一种基于API的机制,该机制揭示了基本功能。最后,由于FC5随着预期的重大新公告的迅速发展,因此持续的改进至关重要。至少两个模型应用,分子动力学和地图还原将用作测试用例。随着计算服务持续合并到云中,潜在的更广泛的影响是增加并行应用的规模和可用性。云和集群计算在商业,政府和学术应用中的广泛用途意味着所提供的加速度将在许多领域具有广泛的影响。对行业中高性能计算(例如,快速机器学习)的日益增长的接受是该项目将增强的一个特殊潜在商业领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Herbordt其他文献

AutoAnnotate: Reinforcement Learning based Code Annotation for High Level Synthesis
AutoAnnotate:基于强化学习的代码注释,用于高级综合

Martin Herbordt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Herbordt', 18)}}的其他基金

Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
  • 批准号:
    2151021
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
  • 批准号:
    1919130
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
II-EN: Collaborative Research: Large-Scale FPGA-Centric Cluster with Direct and Programmable Communication
II-EN:协作研究:具有直接可编程通信功能的以 FPGA 为中心的大规模集群
  • 批准号:
    1405695
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CI-P: Collaborative Research: Large-Scale FPGA-Centric Computing with Molecular Dynamics
CI-P:协作研究:以 FPGA 为中心的大规模分子动力学计算
  • 批准号:
    1205593
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Integrating Architecture-Level Simulation with Industrial CAD Tools for Prototyping High-Performance Coprocessors
职业:将架构级仿真与工业 CAD 工具集成以制作高性能协处理器原型
  • 批准号:
    0228094
  • 财政年份:
    2002
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
CAREER: Integrating Architecture-Level Simulation with Industrial CAD Tools for Prototyping High-Performance Coprocessors
职业:将架构级仿真与工业 CAD 工具集成以制作高性能协处理器原型
  • 批准号:
    9702483
  • 财政年份:
    1997
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
  • 批准号:
    2334624
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了