III: Small: Collaborative Learning with Incomplete and Noisy Knowledge

III:小:知识不完整且有噪音的协作学习

基本信息

  • 批准号:
    1618948
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The accelerated growth of Big Data has created enormous amount of information at the macro level for knowledge discovery. But at the micro level, one can only expect a handful of observations in most individual users. This hinders the exploration of subtle patterns and heterogeneities among distinct users for improving the utility of Big Data analytics at a per-user basis. The objective of this project is to develop a set of algorithmic solutions to perform online learning in a collaborative fashion, where personalized learning solutions actively interact with users for feedback acquisition and collaborate with each other to learn from incomplete and noisy input. This project amplifies the utility of statistical learning in many important fields, such as healthcare, business intelligence, crowdsourcing, and cyber physical systems, where automated decision models are built on diverse, noisy and heterogeneous supervision. The research activities will be incorporated into teaching materials for student training and education in the areas of information retrieval, machine learning and data mining. This project consists of three synergistic research thrusts. First, it develops a family of contextual bandit algorithms to perform collaborative online learning over networked users. Dependency among users is estimated and exploited to collaboratively update the individualized bandit parameters. Second, it develops principled solutions to optimize task-specific and general loss functions for online learning, which enables the collaborative learning solutions reach more important real-world applications, such as information retrieval and user behavior modeling. Third, it models and differentiates the reliability of the sources of feedback to optimize the overall online learning effectiveness, which is especially important in the applications such as health informatics, crowdsourcing and cyber physical systems. Expected outcomes of the project include: 1) open source implementations for the developed online learning solutions; and 2) evaluation corpora that will enable researchers to conduct follow-up research in related domains.
大数据的加速增长为知识发现创造了宏观层面的海量信息。但在微观层面上,人们只能预期大多数个人用户会有少量的观察。这阻碍了在不同用户之间探索微妙的模式和异构性,以提高每个用户的大数据分析的效用。这个项目的目标是开发一套算法解决方案来以协作的方式执行在线学习,其中个性化的学习解决方案积极地与用户交互以获取反馈,并相互协作从不完整和有噪音的输入中学习。该项目扩大了统计学习在许多重要领域的效用,如医疗保健、商业智能、众包和网络物理系统,在这些领域,自动决策模型建立在多样化、嘈杂和异质监督的基础上。研究活动将纳入教材,供学生在信息检索、机器学习和数据挖掘领域进行培训和教育。该项目由三个协同研究推力组成。首先,它开发了一系列情境强盗算法,以在联网用户上执行协作式在线学习。估计用户之间的依赖关系,并利用该依赖关系协作更新个性化的盗贼参数。其次,开发了原则性解决方案来优化在线学习的特定任务和一般损失函数,使协作学习解决方案能够应用于更重要的现实应用,如信息检索和用户行为建模。第三,对反馈来源的可靠性进行建模和区分,以优化整体在线学习效果,这在健康信息学、众包和网络物理系统等应用中尤为重要。该项目的预期成果包括:1)开发在线学习解决方案的开放源码实施;2)评估语料库,使研究人员能够在相关领域开展后续研究。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient Exploration of Gradient Space for Online Learning to Rank
Stochastic Variance-Reduced Cubic Regularized Newton Method
  • DOI:
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongruo Zhou;Pan Xu;Quanquan Gu
  • 通讯作者:
    Dongruo Zhou;Pan Xu;Quanquan Gu
Accelerated Stochastic Mirror Descent: From Continuous-time Dynamics to Discrete-time Algorithms
加速随机镜像下降:从连续时间动力学到离散时间算法
A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery
  • DOI:
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Zhang;Lingxiao Wang;Quanquan Gu
  • 通讯作者:
    Xiao Zhang;Lingxiao Wang;Quanquan Gu
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
  • DOI:
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Difan Zou;Pan Xu;Quanquan Gu
  • 通讯作者:
    Difan Zou;Pan Xu;Quanquan Gu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Quanquan Gu其他文献

Different patterns of gray matter density in early- and middle-late-onset Parkinson’s disease a voxel-based morphometry study
早发和中晚发帕金森病灰质密度的不同模式:基于体素的形态测量研究
  • DOI:
    10.1007/s11682-017-9745-4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Min Xuan;Xiaojun Guan;Peiyu Huang;Zhujing Shen;Quanquan Gu;Xinfeng Yu;Xiaojun Xu;Wei Luo;Minming Zhang
  • 通讯作者:
    Minming Zhang
Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback
来自对抗性反馈的上下文决斗强盗的近乎最优算法
  • DOI:
    10.48550/arxiv.2404.10776
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiwei Di;Jiafan He;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation
用于文本到图像生成的扩散模型的自玩微调
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huizhuo Yuan;Zixiang Chen;Kaixuan Ji;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Provable Multi-Objective Reinforcement Learning with Generative Models
可证明的多目标强化学习与生成模型
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongruo Zhou;Jiahao Chen;Quanquan Gu
  • 通讯作者:
    Quanquan Gu
Matching the Statistical Query Lower Bound for k-sparse Parity Problems with Stochastic Gradient Descent
使用随机梯度下降匹配 k 稀疏奇偶校验问题的统计查询下界
  • DOI:
    10.48550/arxiv.2404.12376
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiwen Kou;Zixiang Chen;Quanquan Gu;S. Kakade
  • 通讯作者:
    S. Kakade

Quanquan Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Quanquan Gu', 18)}}的其他基金

Collaborative Research: Towards the Foundation of Approximate Sampling-Based Exploration in Sequential Decision Making
协作研究:为顺序决策中基于近似采样的探索奠定基础
  • 批准号:
    2323113
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312094
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Towards the Foundations of Training Deep Neural Networks: New Theory and Algorithms
III:小:迈向训练深度神经网络的基础:新理论和算法
  • 批准号:
    2008981
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CIF: Small: Collaborative Research: Rank Aggregation with Heterogeneous Information Sources: Efficient Algorithms and Fundamental Limits
CIF:小型:协作研究:异构信息源的排名聚合:高效算法和基本限制
  • 批准号:
    1911168
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1903202
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1855099
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
  • 批准号:
    1906169
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
BIGDATA: F: Collaborative Research: Taming Big Networks via Embedding
BIGDATA:F:协作研究:通过嵌入驯服大网络
  • 批准号:
    1741342
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Learning with Incomplete and Noisy Knowledge
III:小:知识不完整且有噪音的协作学习
  • 批准号:
    1904183
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: High-Dimensional Machine Learning Methods for Personalized Cancer Genomics
III:小:协作研究:个性化癌症基因组学的高维机器学习方法
  • 批准号:
    1717206
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322973
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
  • 批准号:
    2322974
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336769
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: A DREAM Proactive Conversational System
合作研究:III:小型:一个梦想的主动对话系统
  • 批准号:
    2336768
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
III: Small: Multiple Device Collaborative Learning in Real Heterogeneous and Dynamic Environments
III:小:真实异构动态环境中的多设备协作学习
  • 批准号:
    2311990
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324770
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
  • 批准号:
    2316306
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311598
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
  • 批准号:
    2324769
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了