CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science

CHS:小型:协作研究:优化公民科学的人机系统

基本信息

  • 批准号:
    1619071
  • 负责人:
  • 金额:
    $ 13.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This research aims to improve the efficiency, accuracy, and usability of online systems supporting citizen science, in which communities organized around serious scientific research projects combine the contributions of amateurs and professionals. In order to respond most efficiently to the increasing data deluge across multiple domains, citizen science platforms need to be more dynamic and complex - incorporating intelligent task assignment and machine learning strategies. Systems that make use of both human and machine intelligence are of interest to scientists from a wide range of disciplines. Whether viewed as social machines or as active learning systems in which progressive input from humans improves machine learning, these hybrid systems exhibit complex behavior which needs to be understood for effective system design. For example, machine learning researchers have concentrated on using the large training sets produced by citizen science projects in order to train algorithms that are later applied to a full dataset. Yet this serial processing may not be the most efficient use of the human or machine effort. The main research goal of this project is to investigate how the overall efficiency of the combined human-machine system is impacted by the separate components and their related properties and what the implications are for either human or machine classifiers or both. This process will test the hypothesis that improved overall efficiency will actually reduce the load on expert human classifiers instead of, as currently required, needing larger expert training sets for machines. This project will investigate the dynamic combination of human and machine classifiers, gaining for the first time knowledge of how load can be optimally shared in a real, flexible citizen science platform. This research effort will be supported by building and deploying software modules on the existing Zooniverse infrastructure, the world-leading platform for online citizen science. It will (1) carry out efficient and dynamic task assignment, distinguishing in near-real time between experienced and inexperienced, and between skilled and less skilled classifiers; and (2) combine human and machine classifications dynamically, periodically training automatic classification routines on the increasing volume of training data produced by volunteers. This new software will then be utilized in a novel "cascade filtering" mode that reduces complex classification problems into a series of single binary tasks. The software developed in this project will provide domain scientists and social machine researchers who wish to exploit the new infrastructure with a fully flexible suite of functions appropriate to the needs defined by their specific problems.
本研究旨在提高支持公民科学的在线系统的效率、准确性和可用性,在该系统中,围绕严肃的科学研究项目组织的社区将业余爱好者和专业人士的贡献联合收割机结合起来。 为了最有效地应对跨多个领域日益增长的数据洪流,公民科学平台需要更加动态和复杂-结合智能任务分配和机器学习策略。利用人类和机器智能的系统引起了来自广泛学科的科学家的兴趣。无论是被视为社会机器,还是被视为主动学习系统,其中来自人类的渐进输入改善了机器学习,这些混合系统都表现出复杂的行为,需要理解这些行为才能进行有效的系统设计。例如,机器学习研究人员专注于使用公民科学项目产生的大型训练集,以便训练随后应用于完整数据集的算法。然而,这种串行处理可能不是对人类或机器努力的最有效利用。该项目的主要研究目标是研究组合人机系统的整体效率如何受到单独组件及其相关属性的影响,以及对人类或机器分类器或两者的影响。这个过程将测试这样一个假设,即提高整体效率实际上会减少专家人类分类器的负载,而不是像目前所要求的那样,需要更大的机器专家训练集。该项目将研究人类和机器分类器的动态组合,首次了解如何在真实的,灵活的公民科学平台中最佳分担负载。这项研究工作将通过在现有的Zooniverse基础设施上构建和部署软件模块来支持,Zooniverse是世界领先的在线公民科学平台。 它将(1)进行有效和动态的任务分配,在有经验和无经验之间以及熟练和不熟练的分类器之间进行近实时的区分;(2)联合收割机动态地结合人机分类,定期根据志愿者产生的越来越多的训练数据训练自动分类程序。这种新的软件将被用于一种新的“级联过滤”模式,将复杂的分类问题简化为一系列单一的二进制任务。 该项目开发的软件将为希望利用新基础设施的领域科学家和社会机器研究人员提供一套完全灵活的功能,以满足其特定问题所定义的需求。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Citizen science frontiers: Efficiency, engagement, and serendipitous discovery with human–machine systems
公民科学前沿:人机系统的效率、参与度和偶然发现
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Trouille其他文献

Laura Trouille的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Trouille', 18)}}的其他基金

CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006400
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Framework: Software: HDR: Building the Twenty-First Century Citizen Science Framework to Enable Scientific Discovery Across Disciplines
合作研究:框架:软件:HDR:构建二十一世纪公民科学框架以实现跨学科的科学发现
  • 批准号:
    1835272
  • 财政年份:
    2019
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Engaging Non-Science Majors in Authentic Research through Citizen Science
通过公民科学让非科学专业学生参与真实研究
  • 批准号:
    1821319
  • 财政年份:
    2018
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Leveraging Citizen Science for Informal Science Learning
利用公民科学进行非正式科学学习
  • 批准号:
    1713425
  • 财政年份:
    2017
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Engaging Introductory Astronomy Students in Authentic Research through Citizen Science
合作研究:让天文学入门学生通过公民科学参与真实研究
  • 批准号:
    1524189
  • 财政年份:
    2015
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
SoCS: Collaborative Research: Focusing Attention to Improve the Performance of Citizen Science Systems: Beautiful Images and Perceptive Observers
SoCS:协作研究:集中注意力提高公民科学系统的性能:美丽的图像和敏锐的观察者
  • 批准号:
    1211094
  • 财政年份:
    2012
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

CHS: Small: Collaborative Research: Validating and Communiciating Model-Based Approaches for Data Visualization Ability Assessment
CHS:小型:协作研究:验证和交流基于模型的数据可视化能力评估方法
  • 批准号:
    2120750
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Shared Mobility Systems to Address Transportation Barriers of Underserved Urban and Rural Communities
CHS:小型:合作研究:共享出行系统,解决服务不足的城乡社区的交通障碍
  • 批准号:
    1910281
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006400
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research:Dynamic Computer-Aided Machining: Supporting Interactive Workflows for Digital Fabrication and Manufacturing
CHS:小型:协作研究:动态计算机辅助加工:支持数字制造和制造的交互式工作流程
  • 批准号:
    2007045
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Learning Maker Skills By Building Game Props
CHS:小型:协作研究:通过构建游戏道具来学习创客技能
  • 批准号:
    2008028
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Catalyzing Youth Civic Engagement Through Innovations in Social Computing
CHS:小型:合作研究:通过社会计算创新促进青年公民参与
  • 批准号:
    2054741
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006894
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
CHS: SMALL: Collaborative Research: Adaptive Development Environments: Modeling and Supporting Cognitive Styles of Software Developers
CHS:SMALL:协作研究:自适应开发环境:建模和支持软件开发人员的认知风格
  • 批准号:
    2008089
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Learning Maker Skills By Building Game Props
CHS:小型:协作研究:通过构建游戏道具来学习创客技能
  • 批准号:
    2008116
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Articulate+ - A Conversational Interface for Democr atizing Visual Analysis
CHS:小型:协作研究:Articulate - 用于民主化视觉分析的对话界面
  • 批准号:
    2007257
  • 财政年份:
    2020
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了