The Dynamics of Thin Current Sheets and the Triggering of Fast Reconnection in Different Plasma Environments

不同等离子体环境中薄电流片的动力学和快速重联的触发

基本信息

  • 批准号:
    1619611
  • 负责人:
  • 金额:
    $ 36.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

This research aims to understand the triggering mechanism for some of the most energetic events and beautiful light shows in the visible universe. Space and astrophysical plasmas - the ionized gases constituting the greatest part of the visible (baryonic) Universe - are responsible for a variety of observed energetic phenomena from pulsar gamma-ray flares, to solar flares, to magnetospheric substorms leading to Aurora Borealis. All of these processes are characterized by a preliminary phase of energy storage, where magnetic field energy is built up due to rotational, gravitational, or convective motions of the plasma, followed by the sudden triggering of rapid energy release. Magnetic reconnection, the splicing and reforming of magnetic field lines is thought to be at the heart of most observed explosive phenomena. The results of this research will allow a better understanding of the transition from stability to the sudden release of magnetic energy, with the ability to predict the critical parameters necessary for the transition in different astrophysical, as well as laboratory plasmas. This research project?s broader impact includes a more advanced understanding of this decades-old plasma physics problem both in laboratory and astrophysical contexts, with applications involving future laboratory experiments and advanced numerical computations, as well as NASA missions.The classic picture of magnetic reconnection involves current sheets, assumed to be planar-like and concentrated very narrowly in the third dimension. Recently, the slow, stationary reconnection scenario was transformed by the discovery that such configuration is unstable to tearing at large values of the Lundquist number, S, leading to one promising picture (a.k.a. the plasmoid instability) of fast reconnection. The plasmoid instability of the planar current sheet has a paradoxical feature, in that the instability growth rate diverges with S. Growth rates which become arbitrarily large at high S therefore beg the question of how a system transitions from stability to instability. This difficulty with diverging growth rates was resolved recently by Pucci and Velli, who showed that a limiting current sheet inverse aspect ratio separates slow and fast reconnecting modes, a property they called "Ideal Tearing", or IT. As a consequence, fast reconnection sets in in relatively thick current sheets and all plasmoid instability scalings (number of islands etc.) require correction. Such a scenario is promising in that it not only can explain observed fast reconnection rates, but might also account for the reconnection trigger mechanism. The present research program builds on the IT reconnection framework and generalizes it to different plasma configurations in different regimes by: 1) extending the linear scaling theory to more general equilibria and two dimensions including flows and kinetic regimes; 2) simulating collapsing current sheet in 3D resistive MHD to study nonlinear evolution in configurations with and without initial flows. The results will impact the understanding of catastrophic energy release in natural and laboratory plasmas.
这项研究旨在了解可见宇宙中一些最具能量的事件和美丽的光秀的触发机制。空间和天体物理等离子体——构成可见(重子)宇宙的最大部分的电离气体——是各种观测到的高能现象的原因,从脉冲星伽玛射线耀斑到太阳耀斑,再到导致北极光的磁层亚暴。所有这些过程的特点都是能量储存的初步阶段,在这个阶段,由于等离子体的旋转、重力或对流运动,磁场能量被建立起来,然后突然触发快速的能量释放。磁重联,即磁力线的拼接和重组被认为是大多数观测到的爆炸现象的核心。这项研究的结果将使人们更好地理解从稳定到突然释放磁能的转变,并能够预测不同天体物理学以及实验室等离子体中过渡所需的关键参数。这个研究项目?其更广泛的影响包括在实验室和天体物理学背景下对这个几十年前的等离子体物理问题有更深入的了解,其应用涉及未来的实验室实验和先进的数值计算,以及美国宇航局的任务。磁重联的经典图像涉及电流片,假设是平面状的,并且非常狭窄地集中在第三维度。最近,由于发现这种构型在很大的伦德奎斯特数S值下不稳定,从而改变了缓慢,静止的重连接场景,从而导致了一种有希望的快速重连接图景(又称等离子体不稳定)。平面电流片的等离子体不稳定性具有一个矛盾的特征,即不稳定性增长率随S偏离,在高S时增长率变得任意大,因此提出了系统如何从稳定过渡到不稳定的问题。Pucci和Velli最近解决了这种生长速率不一致的困难,他们展示了一种限制电流片的反向宽高比,将慢速和快速重连模式分开,他们将这种特性称为“理想撕裂”,或IT。因此,在相对较厚的电流片中,快速重连接集和所有等离子体不稳定性缩放(岛屿数量等)需要纠正。这种情况是有希望的,因为它不仅可以解释观察到的快速重连接速率,而且还可以解释重连接触发机制。本研究计划建立在IT重连接框架的基础上,并将其推广到不同状态下的不同等离子体构型:1)将线性标度理论扩展到更一般的平衡态和包括流动和动力学状态在内的二维;2)模拟三维电阻式MHD中坍缩电流片,研究有初始流和无初始流配置下的非线性演化。该结果将影响对自然和实验室等离子体中灾难性能量释放的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Velli其他文献

Deciphering Solar Magnetic Activity: 140 Years of the ‘Extended Solar Cycle’ – Mapping the Hale Cycle
  • DOI:
    10.1007/s11207-021-01938-7
  • 发表时间:
    2021-12-29
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Scott W. McIntosh;Robert J. Leamon;Ricky Egeland;Mausumi Dikpati;Richard C. Altrock;Dipankar Banerjee;Subhamoy Chatterjee;Abhishek K. Srivastava;Marco Velli
  • 通讯作者:
    Marco Velli
Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus
  • DOI:
    10.1007/s11214-015-0206-3
  • 发表时间:
    2015-10-29
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Justin C. Kasper;Robert Abiad;Gerry Austin;Marianne Balat-Pichelin;Stuart D. Bale;John W. Belcher;Peter Berg;Henry Bergner;Matthieu Berthomier;Jay Bookbinder;Etienne Brodu;David Caldwell;Anthony W. Case;Benjamin D. G. Chandran;Peter Cheimets;Jonathan W. Cirtain;Steven R. Cranmer;David W. Curtis;Peter Daigneau;Greg Dalton;Brahmananda Dasgupta;David DeTomaso;Millan Diaz-Aguado;Blagoje Djordjevic;Bill Donaskowski;Michael Effinger;Vladimir Florinski;Nichola Fox;Mark Freeman;Dennis Gallagher;S. Peter Gary;Tom Gauron;Richard Gates;Melvin Goldstein;Leon Golub;Dorothy A. Gordon;Reid Gurnee;Giora Guth;Jasper Halekas;Ken Hatch;Jacob Heerikuisen;George Ho;Qiang Hu;Greg Johnson;Steven P. Jordan;Kelly E. Korreck;Davin Larson;Alan J. Lazarus;Gang Li;Roberto Livi;Michael Ludlam;Milan Maksimovic;James P. McFadden;William Marchant;Bennet A. Maruca;David J. McComas;Luciana Messina;Tony Mercer;Sang Park;Andrew M. Peddie;Nikolai Pogorelov;Matthew J. Reinhart;John D. Richardson;Miles Robinson;Irene Rosen;Ruth M. Skoug;Amanda Slagle;John T. Steinberg;Michael L. Stevens;Adam Szabo;Ellen R. Taylor;Chris Tiu;Paul Turin;Marco Velli;Gary Webb;Phyllis Whittlesey;Ken Wright;S. T. Wu;Gary Zank
  • 通讯作者:
    Gary Zank
Magnetic imprints in the solar wind
太阳风中的磁印记
  • DOI:
    10.1038/s41550-022-01883-w
  • 发表时间:
    2023-01-27
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Marco Velli
  • 通讯作者:
    Marco Velli
Hybrid Simulations of Wave Propagation and Ion Cyclotron Heating in the Expanding Solar Wind
  • DOI:
    10.1023/a:1005169005993
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Paulett Liewer;Marco Velli;Bruce Goldstein
  • 通讯作者:
    Bruce Goldstein

Marco Velli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Velli', 18)}}的其他基金

EAGER: Influence of Coronal Magnetic Structure and Environment of Solar Filaments on the Early Deflection of Coronal Mass Ejections (CMEs): New Observations and Modeling
EAGER:日冕磁结构和太阳细丝环境对日冕物质抛射(CME)早期偏转的影响:新的观测和建模
  • 批准号:
    1853530
  • 财政年份:
    2018
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Standard Grant

相似海外基金

CONDUCTOR Thin and lightweight current collector for lithium-ion battery
CONDUCTOR 锂离子电池用集电体薄型、轻量
  • 批准号:
    10047927
  • 财政年份:
    2023
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Feasibility Studies
Ultra-thin topological insulator spin-current transistor
超薄拓扑绝缘体自旋电流晶体管
  • 批准号:
    2881674
  • 财政年份:
    2023
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Studentship
Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
  • 批准号:
    EP/W006049/1
  • 财政年份:
    2022
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Research Grant
A study on current modulation mechanism of surface-chemical-reaction associated thin film transistor under UV exposure
紫外照射下表面化学反应相关薄膜晶体管电流调制机制研究
  • 批准号:
    22K18787
  • 财政年份:
    2022
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Structural characterization of thin carbon films on high-current silicon field emitters
高电流硅场发射器上碳薄膜的结构表征
  • 批准号:
    10039806
  • 财政年份:
    2022
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Collaborative R&D
Spin current propagation through epitaxial antiferromagnetic thin films
自旋电流通过外延反铁磁薄膜的传播
  • 批准号:
    EP/W006006/1
  • 财政年份:
    2022
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Research Grant
Demonstration of shift current photovoltaic response in high-quality thin films of halide ferroelectrics
高质量卤化物铁电体薄膜中移流光伏响应的演示
  • 批准号:
    20H02626
  • 财政年份:
    2020
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of physical properties of spin current thermoelectric phenomena using magnetic insulator thin films fabricated by wet process
使用湿法制造的磁绝缘体薄膜阐明自旋流热电现象的物理性质
  • 批准号:
    20K05255
  • 财政年份:
    2020
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
EAGER-Generation of Perpendicularly Polarized Spin Current from the Spin-Orbit Effects in Ferromagnetic Thin Film Structures for Memory Applications
存储器应用中的铁磁薄膜结构中的自旋轨道效应急切地产生垂直极化的自旋电流
  • 批准号:
    1738679
  • 财政年份:
    2017
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Standard Grant
Trap distribution analysis for thermal stimulation current of tin-based perovskite thin film
锡基钙钛矿薄膜热刺激电流的陷阱分布分析
  • 批准号:
    15K21224
  • 财政年份:
    2015
  • 资助金额:
    $ 36.6万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了