Regularization of Hypersensitive Problems for Numerical Computation with Empirical Data

用经验数据对数值计算超敏感问题进行正则化

基本信息

  • 批准号:
    1620337
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The aim of this project is the development of regularization theories, robust numerical algorithms, and a software package for problems that are known to be highly sensitive to data perturbations. Some of the fundamental problems in algebraic computation that remain at the frontier in numerical analysis, and where reliable algorithms and software are in demand, are of this nature. Extending on novel theories and algorithms/software developed under previous NSF support, the PI proposes to design algorithms for defective eigenvalue problems, to develop a numerical elimination strategy for polynomial systems, to validate the regularization theories, and to produce software, NAClab. This research attempts to bridge scientific fields of numerical analysis, computer algebra, algebraic geometry, and differential topology. Hypersensitive problems are known to be formidable challenges in practical computation particularly when empirical data are inevitably used. Advances in attacking those problems will enable wide range of applications. The intellectual merit of this project lies in an innovative geometric analysis, proven regularization theory and an effective computational methodology for striking out the dreaded hypersensitivity in fundamental algebraic problems. This project is multidisciplinary in nature along with a major outcome in a robust, blackbox-type, and publicly available software toolbox NAClab to solve highly sensitive algebraic problems arising in sciences/engineering and to serve as building blocks for future algorithmic development. The software will supply critical tools for application areas such as robotics, molecular conformation, chemical equilibrium, Nash equilibria, automatic control, as well as other branches of mathematics such as algebraic geometry.
该项目的目的是发展正则化理论、鲁棒的数值算法和一个软件包,用于解决已知对数据扰动高度敏感的问题。代数计算中的一些基本问题仍然处于数值分析的前沿,并且需要可靠的算法和软件,就是这种性质。在先前NSF支持下开发的新理论和算法/软件的基础上,PI建议设计缺陷特征值问题的算法,开发多项式系统的数值消除策略,验证正则化理论,并制作软件NAClab。本研究试图将数值分析、计算机代数、代数几何和微分拓扑等科学领域连接起来。众所周知,在实际计算中,特别是当不可避免地使用经验数据时,超敏感问题是一个巨大的挑战。在解决这些问题方面取得的进展将使广泛的应用成为可能。这个项目的智力价值在于一个创新的几何分析,证明了正则化理论和一个有效的计算方法,以消除在基本代数问题中可怕的超敏感性。该项目本质上是多学科的,其主要成果是一个强大的、黑盒型的、公开可用的软件工具箱NAClab,以解决科学/工程中出现的高度敏感的代数问题,并作为未来算法开发的基石。该软件将为机器人、分子构象、化学平衡、纳什平衡、自动控制以及代数几何等其他数学分支等应用领域提供关键工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhonggang Zeng其他文献

An efficient and accurate parallel algorithm for the singular value problem of bidiagonal matrices
  • DOI:
    10.1007/s002110050093
  • 发表时间:
    1995-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    T.Y. Li;Noah H. Rhee;Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng
Solving eigenvalue problems of real nonsymmetric matrices with real homotopies
求解具有实同伦的实非对称矩阵的特征值问题
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Y. Li;Zhonggang Zeng;Luan Cong
  • 通讯作者:
    Luan Cong
The numerical greatest common divisor of univariate polynomials
单变量多项式的数值最大公约数
  • DOI:
    10.1090/conm/556/11014
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng
On the Sensitivity of Singular and Ill-Conditioned Linear Systems
  • DOI:
    10.1137/18m1197990
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng
Multiple Roots and Approximate GCDs
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng

Zhonggang Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhonggang Zeng', 18)}}的其他基金

Robust Numerical Methods in Polynomial Algebra with Approximate Data
具有近似数据的多项式代数中的鲁棒数值方法
  • 批准号:
    0715127
  • 财政年份:
    2007
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Robust Numerical Methods in Polynomial Algebra with Approximate Data
具有近似数据的多项式代数中的鲁棒数值方法
  • 批准号:
    0412003
  • 财政年份:
    2004
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant

相似海外基金

Engaging food hypersensitive communities in citizen science
让食物过敏社区参与公民科学
  • 批准号:
    BB/W009102/1
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Allergy Friendly Underwear for people with hypersensitive skin, eczema, contact dermatitis or other skin conditions
适合皮肤过敏、湿疹、接触性皮炎或其他皮肤病患者的防过敏内衣
  • 批准号:
    10045964
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Collaborative R&D
ENCODE Mapping Center-A Comprehensive Catalog of DNase I Hypersensitive Sites
ENCODE 作图中心 - DNase I 超敏感位点综合目录
  • 批准号:
    10241208
  • 财政年份:
    2021
  • 资助金额:
    $ 18万
  • 项目类别:
Sensory friendly environment for hypersensitive people with developmental or psychiatric disorders
为患有发育或精神疾病的过敏人群提供感官友好的环境
  • 批准号:
    20K20837
  • 财政年份:
    2020
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Induction of hypersensitive response cell death by OsCPK8
OsCPK8 诱导过敏反应细胞死亡
  • 批准号:
    19K15844
  • 财政年份:
    2019
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ENCODE Mapping Center-A Comprehensive Catalog of DNase I Hypersensitive Sites
ENCODE 作图中心 - DNase I 超敏感位点综合目录
  • 批准号:
    9247732
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
The function of chloroplasts as a platform activating signaling for hypersensitive response
叶绿体作为激活超敏反应信号传导平台的功能
  • 批准号:
    17K15230
  • 财政年份:
    2017
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Hypersensitive cell death via nitric oxide
一氧化氮引起的过敏性细胞死亡
  • 批准号:
    16K14860
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Hypersensitive diagnosis of urothelial cancer using silver nanoscale hexagonal column
使用银纳米级六角柱对尿路上皮癌进行超敏诊断
  • 批准号:
    16K15696
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Elucidation of hypersensitive cell death mechanism by functional effectomics of Ralstonia solanacearum effectors
通过青枯菌效应子的功能效应组学阐明过敏细胞死亡机制
  • 批准号:
    16K07617
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了