Robust Numerical Methods in Polynomial Algebra with Approximate Data

具有近似数据的多项式代数中的鲁棒数值方法

基本信息

  • 批准号:
    0412003
  • 负责人:
  • 金额:
    $ 9.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-01 至 2008-08-31
  • 项目状态:
    已结题

项目摘要

The project aims to develop robust numerical methods and a high quality software package PolynPak for solving three fundamental algebraic problems: the univariate polynomial AGCD (approximate greatest common divisor), the multivariate polynomial AGCD, and accurate multiplicity-identification/root-finding. All three problems are under a common assumption in application that the given data are empirical and may contain errors from measurement and rounding-off. The methodology in this project consists of a two-stage approach and the theory that, while GCD and multiple roots are ill-posed/ill-conditioned under arbitrary perturbation, they are remarkably insensitive when perturbations are structure-preserving. Therefore, the ill-posedness can be removed by reformulating the problem in a least squares setting under a structural constraint after calculating the structure of AGCD and multiplicity. The approach in this project may also be applicable to other ill-posed problems in numerical computation. This research is carried out in the fields of computer algebra and numerical analysis where the mission is to provide the scientific and industrial community with reliable algorithms and software for solving mathematical problems. Since polynomial is one of the most fundamental models in applied mathematics with a wide range of applications in areas such as economic equilibria, chemical reaction, image processing/restoration, to name a few, developing robust algorithms and software for polynomial algebra, as the objective of this project, may have profound impact in those applications and in scientific computing.
该项目旨在开发一个稳健的数值方法和一个高质量的软件包PolynPak来解决三个基本的代数问题:一元多项式AGCD(近似最大公约数)、多元多项式AGCD和精确的多重性识别/求根。所有这三个问题都是在应用中的一个共同假设下提出的,即给定的数据是经验数据,可能包含测量和舍入的误差。这个项目中的方法包括两个阶段的方法和理论,尽管GCD和多重根在任意扰动下是不适定的/病态的,但当扰动是保持结构时,它们是显著不敏感的。因此,在计算AGCD的结构和重数后,通过在结构约束下的最小二乘设置下对问题进行重写,可以消除问题的不适定性。该方法同样适用于数值计算中的其他不适定问题。这项研究是在计算机代数和数值分析领域进行的,其任务是为科学和工业界提供解决数学问题的可靠算法和软件。由于多项式是应用数学中最基本的模型之一,在经济均衡、化学反应、图像处理/恢复等领域有着广泛的应用,开发多项式代数的健壮算法和软件作为本项目的目标,可能会对这些应用和科学计算产生深远的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhonggang Zeng其他文献

An efficient and accurate parallel algorithm for the singular value problem of bidiagonal matrices
  • DOI:
    10.1007/s002110050093
  • 发表时间:
    1995-01-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    T.Y. Li;Noah H. Rhee;Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng
Solving eigenvalue problems of real nonsymmetric matrices with real homotopies
求解具有实同伦的实非对称矩阵的特征值问题
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Y. Li;Zhonggang Zeng;Luan Cong
  • 通讯作者:
    Luan Cong
The numerical greatest common divisor of univariate polynomials
单变量多项式的数值最大公约数
  • DOI:
    10.1090/conm/556/11014
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng
On the Sensitivity of Singular and Ill-Conditioned Linear Systems
  • DOI:
    10.1137/18m1197990
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng
Multiple Roots and Approximate GCDs
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhonggang Zeng
  • 通讯作者:
    Zhonggang Zeng

Zhonggang Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhonggang Zeng', 18)}}的其他基金

Regularization of Hypersensitive Problems for Numerical Computation with Empirical Data
用经验数据对数值计算超敏感问题进行正则化
  • 批准号:
    1620337
  • 财政年份:
    2016
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Robust Numerical Methods in Polynomial Algebra with Approximate Data
具有近似数据的多项式代数中的鲁棒数值方法
  • 批准号:
    0715127
  • 财政年份:
    2007
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant

相似海外基金

Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Matrix Problems with Singularity
奇异性矩阵问题的鲁棒高效数值方法
  • 批准号:
    20K14356
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Robust and Efficient Numerical Methods for Electromagnetic Wave Propagation in Complex Media
复杂介质中电磁波传播的鲁棒高效数值方法
  • 批准号:
    2011943
  • 财政年份:
    2020
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Hybrid Computational Models and Robust Numerical Methods for Electrostatic Interactions in Biomolecules
生物分子静电相互作用的混合计算模型和鲁棒数值方法
  • 批准号:
    1319731
  • 财政年份:
    2013
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
On robust numerical methods of semidefinite relaxation for polynomial optimization problems
多项式优化问题的半定松弛鲁棒数值方法
  • 批准号:
    22560061
  • 财政年份:
    2010
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CMG Research: Robust Numerical Methods for Multi-Phase Darcy-Stokes Flow in Heterogeneous and Anisotropic Partially Molten Materials
CMG 研究:非均质和各向异性部分熔融材料中多相达西-斯托克斯流的鲁棒数值方法
  • 批准号:
    1025321
  • 财政年份:
    2010
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Development of Synthesis Methods of Robust Nonlinear Control Systems Based on Numerical Optimization
基于数值优化的鲁棒非线性控制系统综合方法的发展
  • 批准号:
    20560420
  • 财政年份:
    2008
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Robust Numerical Methods in Polynomial Algebra with Approximate Data
具有近似数据的多项式代数中的鲁棒数值方法
  • 批准号:
    0715127
  • 财政年份:
    2007
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Standard Grant
Robust numerical methods for nonlinear equations
非线性方程的鲁棒数值方法
  • 批准号:
    16540092
  • 财政年份:
    2004
  • 资助金额:
    $ 9.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了