EAGER: Collaborative: Computational Cognitive Modeling of User Security and Incentive Behaviors
EAGER:协作:用户安全和激励行为的计算认知建模
基本信息
- 批准号:1620862
- 负责人:
- 金额:$ 8.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
User behavior is a critical element in the success or failure of computer security protections. The field of Human Security Informatics (HSI) combines security informatics and human-computer interaction design to learn how the design of a human-computer interface can affect the security of a computer system. This research project is contributing to the scientific foundations of HSI by modeling how multitasking users behave when making security-critical decisions. In particular, the researchers are modeling user behavior when the users are engaged in typical PC-based mobile messaging with security concerns such as phishing or spam. The project is evaluating how well the models capture the impact of incentives and interventions on user security behaviors.This project extends the cognitive modeling (CogM) architecture to characterize and improve user security decision-making and behaviors. Focusing on cognitive constructs in the ACT-R and Soar architectures, it models the multi-tasking application and security activities with varying cognitive traits and security constraints, through representations of productions and information chunks, as well as their utility and activation calculations. An analytic user model not only describes a problem in making a security decision, but also can explain why and how it happens for incentive and intervention selection. Moreover, CogM models and empirical user testing comparatively study common and advanced users in typical messaging applications, regarding security mistakes and efficiency in task completion. This project is focused on establishing the principles for analytically modeling user cyber behaviors and bridging the gap from understanding security behaviors to effectively improving security performance.
用户行为是影响计算机安全防护成败的关键因素。人类安全信息学(HSI)领域将安全信息学和人机交互设计结合在一起,学习人机接口设计如何影响计算机系统的安全。这项研究项目通过模拟多任务用户在做出安全关键决策时的行为,为HSI的科学基础做出了贡献。特别是,研究人员正在对用户在进行典型的基于PC的移动消息传递时的用户行为进行建模,这些移动消息具有安全方面的考虑,如网络钓鱼或垃圾邮件。该项目正在评估模型如何很好地捕捉激励和干预对用户安全行为的影响。该项目扩展了认知建模(CogM)架构,以表征和改进用户安全决策和行为。它着眼于ACT-R和SOAR体系结构中的认知结构,通过产品和信息块的表示以及它们的效用和激活计算,对具有不同认知特征和安全约束的多任务应用和安全活动进行建模。分析型用户模型不仅描述了安全决策中的问题,而且可以解释为什么会发生这种情况,以及如何进行激励和干预选择。此外,CogM模型和经验用户测试对比研究了典型消息传递应用程序中的普通用户和高级用户,研究了任务完成中的安全错误和效率。本项目致力于建立分析建模用户网络行为的原则,并弥合从理解安全行为到有效提高安全性能的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kaiqi Xiong其他文献
Resource Provisioning in SLA-Based Cluster Computing
基于SLA的集群计算中的资源配置
- DOI:
10.1007/978-3-642-16505-4_1 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Kaiqi Xiong;S. Suh - 通讯作者:
S. Suh
Enhancing ML-Based DoS Attack Detection Through Combinatorial Fusion Analysis
通过组合融合分析增强基于 ML 的 DoS 攻击检测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Evans Owusu;M. Rahouti;D. F. Hsu;Kaiqi Xiong;Yufeng Xin - 通讯作者:
Yufeng Xin
Advancing DDoS Attack Detection: A Synergistic Approach Using Deep Residual Neural Networks and Synthetic Oversampling
推进 DDoS 攻击检测:使用深度残差神经网络和合成过采样的协同方法
- DOI:
10.48550/arxiv.2401.03116 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ali Alfatemi;Mohamed Rahouti;Ruhul Amin;Sarah Aljamal;Kaiqi Xiong;Yufeng Xin - 通讯作者:
Yufeng Xin
Nonlinear target tracking for threat detection using RSSI and optical fusion
使用 RSSI 和光学融合进行非线性目标跟踪以进行威胁检测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Tommy Chin;Kaiqi Xiong;Erik Blasch - 通讯作者:
Erik Blasch
Applying Machine Learning Techniques to Understand User Behaviors When Phishing Attacks Occur
应用机器学习技术了解网络钓鱼攻击发生时的用户行为
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yi Li;Kaiqi Xiong;Xiangyang Li - 通讯作者:
Xiangyang Li
Kaiqi Xiong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kaiqi Xiong', 18)}}的其他基金
Building Cloud-Based Experiential Blockchain Learning Modules for Cybersecurity Education
为网络安全教育构建基于云的体验式区块链学习模块
- 批准号:
2236283 - 财政年份:2023
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
US Ignite: Track 1: Collaborative Research: DISTINCT: A Distributed Multi-Loop Networked System for Wide-Area Control of Large Power Grids
US Ignite:轨道 1:合作研究:DISTINCT:用于大型电网广域控制的分布式多环网络系统
- 批准号:
1531061 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
US Ignite: Track 1: Collaborative Research: DISTINCT: A Distributed Multi-Loop Networked System for Wide-Area Control of Large Power Grids
US Ignite:轨道 1:合作研究:DISTINCT:用于大型电网广域控制的分布式多环网络系统
- 批准号:
1620871 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
Collaborative Project: Building An Innovative Smartphone Virtual Laboratory Environment for Cyber-security Education and Training
合作项目:为网络安全教育和培训构建创新的智能手机虚拟实验室环境
- 批准号:
1636622 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
IUSE: Collaborative Project: Building Virtual Research, Interactive, Service, and Experiential Learning Modules for Cyber Security Education
IUSE:合作项目:为网络安全教育构建虚拟研究、互动、服务和体验式学习模块
- 批准号:
1651280 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative: Computational Cognitive Modeling of User Security and Incentive Behaviors
EAGER:协作:用户安全和激励行为的计算认知建模
- 批准号:
1544385 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: The Performance Evaluation of Intra-domain Bandwidth Allocation and Inter-domain Routing Algorithms for a QoS-guaranteed Routing Path Discovery
EAGER:用于 QoS 保证的路由路径发现的域内带宽分配和域间路由算法的性能评估
- 批准号:
1633978 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
IUSE: Collaborative Project: Engaged Student Learning: Design and Development, Level I: Broadening the Path to the STEM Profession Through Cybersecurity Learning
IUSE:合作项目:学生参与学习:设计与开发,第一级:通过网络安全学习拓宽 STEM 职业之路
- 批准号:
1525278 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
IUSE: Collaborative Project: Engaged Student Learning: Design and Development, Level I: Broadening the Path to the STEM Profession Through Cybersecurity Learning
IUSE:合作项目:学生参与学习:设计与开发,第一级:通过网络安全学习拓宽 STEM 职业之路
- 批准号:
1620868 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
IUSE: Collaborative Project: Building Virtual Research, Interactive, Service, and Experiential Learning Modules for Cyber Security Education
IUSE:合作项目:为网络安全教育构建虚拟研究、互动、服务和体验式学习模块
- 批准号:
1431265 - 财政年份:2014
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
相似海外基金
Computational Infrastructure for Brain Research: EAGER: BrainLab CI: Collaborative, Community Experiments with Data-Quality Controls through Continuous Integration
脑研究的计算基础设施:EAGER:BrainLab CI:通过持续集成进行数据质量控制的协作社区实验
- 批准号:
1649880 - 财政年份:2017
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative: Computational Cognitive Modeling of User Security and Incentive Behaviors
EAGER:协作:用户安全和激励行为的计算认知建模
- 批准号:
1544385 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative: Computational Cognitive Modeling of User Security and Incentive Behaviors
EAGER:协作:用户安全和激励行为的计算认知建模
- 批准号:
1544493 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Probabilistic Analysis of Dynamic X-ray Diffraction Data: Toward Validated Computational Models for Polycrystalline Plasticity
合作研究:EAGER-DynamicData:动态 X 射线衍射数据的概率分析:建立经过验证的多晶塑性计算模型
- 批准号:
1462387 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Probabilistic Analysis of Dynamic X-ray Diffraction Data: Toward Validated Computational Models for Polycrystalline Plasticity
合作研究:EAGER-DynamicData:动态 X 射线衍射数据的概率分析:建立经过验证的多晶塑性计算模型
- 批准号:
1462352 - 财政年份:2015
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Making Software Engineering Work for Computational Science and Engineering: An Integrated Approach
EAGER:协作研究:使软件工程为计算科学与工程服务:一种综合方法
- 批准号:
1445344 - 财政年份:2014
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Making Software Engineering Work for Computational Science and Engineering: An Integrated Approach
EAGER:协作研究:使软件工程为计算科学与工程服务:一种综合方法
- 批准号:
1445347 - 财政年份:2014
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: A Computational Model for Evaluating the Quality of Citizen Science Contributions
EAGER:协作研究:评估公民科学贡献质量的计算模型
- 批准号:
1451033 - 财政年份:2014
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: A Computational Model for Evaluating the Quality of Citizen Science Contributions
EAGER:协作研究:评估公民科学贡献质量的计算模型
- 批准号:
1451079 - 财政年份:2014
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: A Computational Model for Evaluating the Quality of Citizen Science Contributions
EAGER:协作研究:评估公民科学贡献质量的计算模型
- 批准号:
1450942 - 财政年份:2014
- 资助金额:
$ 8.24万 - 项目类别:
Standard Grant