EAGER: Collaborative Research: A Computational Model for Evaluating the Quality of Citizen Science Contributions

EAGER:协作研究:评估公民科学贡献质量的计算模型

基本信息

  • 批准号:
    1451079
  • 负责人:
  • 金额:
    $ 9.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Citizen science is a form of research collaboration that involves members of the public in scientific projects, bringing multiple voices and ideas to problem solving and community participation. Citizen science can be powerful because while specific individuals may lack formal expertise and be limited in their ability to contribute high-quality data and new directions, a crowd of individuals may collectively possess the expertise and creativity necessary for identifying and solving difficult problems. However, a major concern for collecting scientific data from the crowd is the varied quality of the contributed data and their relevance to scientific hypotheses. The PIs will explore the potential for deriving metrics from research on computational creativity to automatically assess the quality of citizen science data as a complement to existing research on human assessment of data quality. The project will also explore how the automated assessment of quality can be incorporated into an agent that makes suggestions to individuals in the crowd about the quality of their data, resulting in a prototype for a computational agent that measures the novelty and value of a cizen science contribution. This project will inform future research in computational agents that learn from and contribute to the crowd in order to address challenges associated with the quality of the data and ideas from crowdsourcing in citizen science. More specifically, the project includes a) development of a model of citizen-science-data quality based on the notion that good contributions are not just reliable and accurate but also novel and surprising; b) an evaluation of the model against citizen-science data that has been labeled by humans for quality; and c) initial studies of the effect of computational quality feedback on the behavior and perception of members of the crowd. Extending quality assessment to include creativity and being able to make such assessments automatically is potentially tranformative for citizen science projects. The PIs will demonstrate their agent-based model of quality in citizen science projects including their own NatureNet project, which involves crowd participants in data collection in nature preserves and also in the design of scientific challenges and interaction experience that facilitate data collection.
公民科学是一种研究合作的形式,它让公众参与科学项目,为解决问题和社区参与带来多种声音和想法。公民科学可以是强大的,因为虽然特定的个人可能缺乏正式的专业知识,并且在贡献高质量数据和新方向的能力方面受到限制,但一群个人可能集体拥有识别和解决困难问题所必需的专业知识和创造力。然而,从人群中收集科学数据的一个主要问题是所提供数据的质量参差不齐,以及它们与科学假设的相关性。pi将探索从计算创造力研究中衍生指标的潜力,以自动评估公民科学数据的质量,作为对现有人类评估数据质量研究的补充。该项目还将探索如何将质量的自动评估整合到一个代理中,该代理向人群中的个人提供有关其数据质量的建议,从而产生一个计算代理的原型,该原型可以衡量公民科学贡献的新颖性和价值。该项目将为未来的计算代理研究提供信息,这些计算代理从人群中学习并为人群做出贡献,以解决与公民科学中众包数据和想法的质量相关的挑战。更具体地说,该项目包括a)建立一个公民科学数据质量模型,该模型基于这样一种观念,即好的贡献不仅可靠和准确,而且新颖和令人惊讶;B)针对已被人类标记为质量的公民科学数据对模型进行评估;c)计算质量反馈对群体成员行为和感知的影响的初步研究。对公民科学项目来说,将质量评估扩展到包括创造力和能够自动进行这种评估是潜在的变革。项目负责人将在公民科学项目(包括他们自己的NatureNet项目)中展示他们基于主体的质量模型,该项目涉及到在自然保护区收集数据的人群参与者,以及设计促进数据收集的科学挑战和互动体验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Lou Maher其他文献

Enabling Investigation of Impacts of Inclusive Collaborative Active Learning Practices on Intersectional Groups of Students in Computing Education
调查包容性协作主动学习实践对计算机教育中交叉学生群体的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sri Yash Tadimalla;Celine Latulipe;Mary Lou Maher;Marlon Mejias;Jamie Payton;A. Rorrer;John Fiore;G. Kwatny;Andrew Rosen
  • 通讯作者:
    Andrew Rosen
Risks and benefits of mass screening for colorectal neoplasia with the stool guaiac test
通过粪便愈创木脂试验大规模筛查结直肠肿瘤的风险和益处
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Winchester;Joanne Sylvester;Mary Lou Maher
  • 通讯作者:
    Mary Lou Maher
An Exploratory Study on the Impact of AI tools on the Student Experience in Programming Courses: an Intersectional Analysis Approach
人工智能工具对学生编程课程体验影响的探索性研究:交叉分析方法
Implications of Identity in AI: Creators, Creations, and Consequences
人工智能中身份的含义:创造者、创造和后果
  • DOI:
    10.1609/aaaiss.v3i1.31268
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sri Yash Tadimalla;Mary Lou Maher
  • 通讯作者:
    Mary Lou Maher
A Grassroots Mammography Demonstration Project Targeted to Medically Underserved Rural and Urban Illinois Women of Diverse Races and Ethnicity
针对医疗服务不足的伊利诺伊州农村和城市不同种族和族裔妇女的草根乳房X光检查示范项目
  • DOI:
    10.1111/j.1524-4741.1997.tb00137.x
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lola Flamm;Arthur G. Michel;H. J. Lasky;Mary Lou Maher;Joanne Sylvester;Stephen F. Sener
  • 通讯作者:
    Stephen F. Sener

Mary Lou Maher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Lou Maher', 18)}}的其他基金

Conference: NSF Workshop: Expanding Capacity and Diversity in AI Education
会议:NSF 研讨会:扩大人工智能教育的能力和多样性
  • 批准号:
    2330257
  • 财政年份:
    2023
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Examining the Effects of Course Climate, Active Learning, and Intersectional Identities on Undergraduate Student Success in Computing
检查课程气氛、主动学习和交叉身份对本科生计算机成功的影响
  • 批准号:
    2111376
  • 财政年份:
    2021
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
I-Corps: Digital Platform for Informal Learning Experiences to Encourage Curiosity in STEM Career Paths
I-Corps:提供非正式学习体验的数字平台,鼓励对 STEM 职业道路的好奇心
  • 批准号:
    2031900
  • 财政年份:
    2020
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Developing a Systemic, Scalable Model to Broaden Participation in Middle School Computer Science
合作研究:开发系统的、可扩展的模型以扩大中学计算机科学的参与
  • 批准号:
    1837240
  • 财政年份:
    2018
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER: An Interactive Learning Analytics Framework based on a Student Sequence Model for understanding students, retention, and time to graduation
EAGER:基于学生序列模型的交互式学习分析框架,用于了解学生、保留率和毕业时间
  • 批准号:
    1820862
  • 财政年份:
    2018
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
RI: Small: CompCog: Pique: A Cognitive Model of Curiosity for Personalizing Sequences of Learning Resources
RI:小:CompCog:Pique:用于个性化学习资源序列的好奇心认知模型
  • 批准号:
    1618810
  • 财政年份:
    2016
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
IUSE/PFE:RED: The Connected Learner: Design Patterns for Transforming Computing and Informatics Education
IUSE/PFE:RED:互联学习者:变革计算和信息学教育的设计模式
  • 批准号:
    1519160
  • 财政年份:
    2015
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
AISL: Innovations in Development: Community-Driven Projects That Adapt Technology for Environmental Learning in Nature Preserves
AISL:发展创新:社区驱动的项目,采用自然保护区环境学习技术
  • 批准号:
    1423212
  • 财政年份:
    2015
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Continuing Grant
VOSS: Crowdsourcing interaction design for citizen science virtual organizations
VOSS:公民科学虚拟组织的众包交互设计
  • 批准号:
    1221513
  • 财政年份:
    2012
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
HCC: Small: Designing Tangible Computing for Creativity
HCC:小型:为创造力设计有形计算
  • 批准号:
    1218160
  • 财政年份:
    2012
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 9.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了