Asynchronous parallel stochastic frameworks with convergence guarantee for solving large-scale fixed point problems
用于解决大规模不动点问题的具有收敛保证的异步并行随机框架
基本信息
- 批准号:1621798
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last two decades, the size of data sets in a large number of areas has grown quickly. In many applications of machine learning, there are massive amounts of training data sets and the data sets may be collected and stored at different locations. Learning a model from these data sets imposes high demands for computation, memory, and data transfer on algorithms. Asynchronous parallel algorithms are applied to solve these large-scale problems via high performance computing and reduced communication and idle time. The performance of asynchronous parallel algorithms is improved largely comparing to synchronous parallel algorithms, especially when the number of cores is large. However, theoretical analysis on the convergence and convergence rates of these algorithms still investigation. In this proposal, the PI will develop fast and robust generic asynchronous parallel stochastic frameworks with provable convergence for solving large-scale fixed point problems that have applications in a large number of areas. One objective is to develop asynchronous stochastic algorithms for finding a zero point of a random operator, the sum of a random operator and a deterministic operator, and the sum of two random operators and show the convergence of these algorithms. Another objective is to couple coordinate updates into these asynchronous stochastic algorithms and show their convergence. The last objective is to implement these algorithms and develop software to help people without knowledge about parallel computing run asynchronous algorithms. The research in solving fixed point problems is motivated by problems in various computational sciences and engineering, and its development benefits all these fields by providing fast and robust algorithms. Areas impacted by the proposed work include machine learning, optimization, optimal control, statistics, finance, signal and image processing, compressive sensing, as well as other lines of research involving large data sets and distributed data.
在过去的二十年中,大量领域的数据集规模迅速增长。在机器学习的许多应用中,存在大量的训练数据集,这些数据集可能被收集并存储在不同的位置。从这些数据集学习模型对算法的计算、内存和数据传输提出了很高的要求。异步并行算法通过高性能计算和减少通信和空闲时间来解决这些大规模问题。异步并行算法的性能比同步并行算法有很大的提高,特别是在核数较大的情况下。然而,对这些算法的收敛性和收敛速度的理论分析仍在研究中。在本提案中,PI将开发快速鲁棒的通用异步并行随机框架,具有可证明的收敛性,用于解决在大量领域有应用的大规模不动点问题。一个目标是开发异步随机算法来寻找随机算子的零点,随机算子与确定性算子的和,以及两个随机算子的和,并证明这些算法的收敛性。另一个目标是将坐标更新耦合到这些异步随机算法中,并证明它们的收敛性。最后一个目标是实现这些算法并开发软件来帮助不了解并行计算的人运行异步算法。求解不动点问题的研究受到各种计算科学和工程问题的推动,它的发展通过提供快速和鲁棒的算法使所有这些领域受益。受提议工作影响的领域包括机器学习、优化、最优控制、统计、金融、信号和图像处理、压缩感知,以及其他涉及大型数据集和分布式数据的研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming Yan其他文献
Titanium and titanium alloys in drones and other small flying objects
无人机和其他小型飞行物体中的钛和钛合金
- DOI:
10.1016/b978-0-12-815820-3.00018-6 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ming Yan;T. Ebel - 通讯作者:
T. Ebel
Screening UDP-glycosyltransferases for effectively transforming Stevia glycosides: Enzymatic synthesis of glucosylated derivatives of rubusoside
筛选有效转化甜叶菊糖苷的UDP-糖基转移酶:酶法合成甜叶悬钩子苷的糖基化衍生物
- DOI:
10.1021/acs.jafc.2c06185 - 发表时间:
2022 - 期刊:
- 影响因子:6.1
- 作者:
Huayi Pan;Liang Xiao;Kexin Tang;Haojun Xia;Yan Li;Honghua Jia;Ping Wei;Ming Yan - 通讯作者:
Ming Yan
Design and synthesis of 7-alkoxy-4-heteroarylamino-3-quinolinecarbonitriles as dual inhibitors of c-Src kinase and nitric oxide synthase.
设计和合成 7-烷氧基-4-杂芳基氨基-3-喹啉甲腈作为 c-Src 激酶和一氧化氮合酶的双重抑制剂。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:3.5
- 作者:
Xin Cao;Q. You;Zhi;Q. Guo;Jing Shang;Ming Yan;J. Chern;Meng - 通讯作者:
Meng
Filament-induced nonlinear hyperspectral fluorescence imaging
灯丝诱导非线性高光谱荧光成像
- DOI:
10.1016/j.optlaseng.2022.107109 - 发表时间:
2022 - 期刊:
- 影响因子:4.6
- 作者:
Xiaoyue Wang;Junyi Nan;Jiayun Xue;Weiwei Liu;Ming Yan;Shuai Yuan;Kun Huang;Heping Zeng - 通讯作者:
Heping Zeng
A Feldkamp-type approximate algorithm for helical multislice CT using extended scanning helix
扩展扫描螺旋的螺旋多层CT Feldkamp型近似算法
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
H. Liang;Cisheng Zhang;Ming Yan - 通讯作者:
Ming Yan
Ming Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming Yan', 18)}}的其他基金
Distributed Synchronous and Asynchronous Stochastic Optimization Algorithms over Networks
网络分布式同步和异步随机优化算法
- 批准号:
2012439 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
强流低能加速器束流损失机理的Parallel PIC/MCC算法与实现
- 批准号:11805229
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10437327 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Advanced Parallel Readers for DNA Sequencing Through a 2D Nanopore
用于通过 2D 纳米孔进行 DNA 测序的高级并行读取器
- 批准号:
10676761 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Big Data Predictive Phylogenetics with Bayesian Learning
使用贝叶斯学习的大数据预测系统发育学
- 批准号:
10039150 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Big Data Predictive Phylogenetics with Bayesian Learning
使用贝叶斯学习的大数据预测系统发育学
- 批准号:
10176406 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Big Data Predictive Phylogenetics with Bayesian Learning
使用贝叶斯学习的大数据预测系统发育学
- 批准号:
10398175 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Brainware Large-Scale Vision Hardware Based on Parallel Stochastic Computing
基于并行随机计算的Brainware大规模视觉硬件
- 批准号:
16K12494 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of protein function prediction methods with global substructures and interaction stochastic models
开发具有全局子结构和相互作用随机模型的蛋白质功能预测方法
- 批准号:
16K00392 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generalized Gamma Stochastic Volatility Models
广义伽马随机波动率模型
- 批准号:
26780135 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Stochastic Comparison Approach to Parallel Server Queues
并行服务器队列的随机比较方法
- 批准号:
1333457 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
AF: Small: Approximate Augmented Lagrangians: First-Order and Parallel Optimization Methods, with Applications to Stochastic Programming
AF:小:近似增广拉格朗日:一阶和并行优化方法,及其在随机规划中的应用
- 批准号:
1115638 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




