SCH: INT: Collaborative Research: Assistive Integrative Support Tool for Retinopathy of Prematurity
SCH:INT:合作研究:早产儿视网膜病变辅助综合支持工具
基本信息
- 批准号:1622679
- 负责人:
- 金额:$ 40.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Retinopathy of prematurity (ROP) is a leading cause of childhood visual loss worldwide, and the social burdens of infancy-acquired blindness are enormous. Early diagnosis is critically important for successful treatment, and can prevent most cases of blindness. However, lack of access to expert medical diagnosis and care, especially in rural areas, remains a growing healthcare challenge. In addition, clinical expertise in ROP is lacking, and medical professionals are struggling to meet the increasing need for ROP care. As point-of-care technologies for diagnosis and intervention are rapidly expanding, the potential ability to assess ROP severity from any location with an internet connection and a camera, even without immediate ophthalmologic consultation available, could significantly improve delivery of ROP care by identifying infants who are in most urgent need for referral and treatment. This would dramatically reduce the incidence of blindness without a proportionate increase in the need for human resources, which take many years to develop. This project develops a prototype assistive integrative support tool for ROP, featuring a modular design comprising: (a) image analysis, (b) information fusion of clinical, imaging, and diagnostic data, and (c) generative probabilistic and regression models with associated computationally efficient machine learning algorithms. The outcomes of the project include disease severity metrics and diagnostic estimates obtained through clinical evidence classifiers trained jointly over expert-generated labels. These labels consist of discrete diagnostic labels, as well as comparison outcomes of relative severity between pairs of images. Random process models for vessel tortuosity and diameter distributions over the retina, as well as patch-based vessel-free image analysis through the use of convolutional neural networks on the entire image, enhance and augment feature extraction. Moreover, incorporating severity comparison outcomes through novel hard and soft constraint methods force inferred severity to agree with ordinal information provided by experts and address inherent uncertainty in expert ground-truth labels. The above severity inference methods are evaluated and fine-tuned over a broad array of generative models, both through retrospective analysis, including cross-validation, longitudinal tests, and tests across multiple sites, as well as through prospective analysis, evaluating its real-world clinical impact.
早产儿视网膜病变(ROP)是全球儿童视力丧失的主要原因,婴儿获得性失明的社会负担是巨大的。早期诊断对于成功治疗至关重要,可以防止大多数失明病例。然而,缺乏专业医疗诊断和护理的机会,特别是在农村地区,仍然是一个日益严峻的医疗保健挑战。此外,缺乏ROP的临床专业知识,医疗专业人员正在努力满足对ROP护理日益增长的需求。随着用于诊断和干预的即时护理技术的迅速发展,即使没有立即的眼科咨询,从任何位置通过互联网连接和摄像头评估ROP严重程度的潜在能力也可以通过识别最迫切需要转诊和治疗的婴儿来显着改善ROP护理的提供。这将大大减少失明的发生率,而不会相应地增加对人力资源的需求,而人力资源的开发需要多年的时间。该项目开发了一种用于ROP的原型辅助综合支持工具,其特征在于模块化设计,包括:(a)图像分析,(B)临床,成像和诊断数据的信息融合,以及(c)生成概率和回归模型以及相关的计算效率高的机器学习算法。该项目的成果包括疾病严重程度指标和诊断估计,这些指标和估计是通过在专家生成的标签上联合训练的临床证据分类器获得的。这些标签包括离散的诊断标签,以及图像对之间的相对严重程度的比较结果。视网膜上血管迂曲度和直径分布的随机过程模型,以及通过在整个图像上使用卷积神经网络进行的基于块的无血管图像分析,增强和增强了特征提取。此外,通过新的硬约束和软约束方法将严重性比较结果强制推断的严重性同意专家提供的顺序信息,并解决专家地面实况标签中固有的不确定性。通过回顾性分析(包括交叉验证、纵向测试和多个研究中心的测试)以及前瞻性分析(评估其现实世界的临床影响),在广泛的生成模型上对上述严重程度推断方法进行了评估和微调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Chiang其他文献
Post Go-Live: Maximizing use of your EHR
- DOI:
10.1016/j.jaapos.2011.12.124 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
David Epley;Paul J. Rychwalski;Michael Chiang - 通讯作者:
Michael Chiang
Human perivascular stem cells are superior to stromal vascular fraction in ectopic bone formation
- DOI:
10.1016/j.jamcollsurg.2011.06.169 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
Janette N. Zara;Aaron W. James;Virginia T. Nguyen;Mirko Corselli;Michael Chiang;Xinli Zhang;David Stoker;Kang Ting;Bruno Peault;Chia Soo - 通讯作者:
Chia Soo
New technologies in pediatric ophthalmology: a view from the inside
- DOI:
10.1016/j.jaapos.2021.08.298 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Tamara Wygnanski-Jaffe;Robert W. Arnold;Michael Chiang;Joseph Demer;David Hunter;Cynthia A. Toth;Paul Yang - 通讯作者:
Paul Yang
Controversies in retinopathy of prematurity
- DOI:
10.1016/j.jaapos.2016.07.212 - 发表时间:
2016-08-01 - 期刊:
- 影响因子:
- 作者:
David Wallace;Michael Chiang;William Good;Sharon Freedman;Helen Mintz-Hittner;Thomas Lee - 通讯作者:
Thomas Lee
Genome-wide chromosome architecture prediction reveals biophysical principles underlying gene structure
- DOI:
10.1016/j.xgen.2024.100698 - 发表时间:
2024-12-11 - 期刊:
- 影响因子:
- 作者:
Michael Chiang;Chris A. Brackley;Catherine Naughton;Ryu-Suke Nozawa;Cleis Battaglia;Davide Marenduzzo;Nick Gilbert - 通讯作者:
Nick Gilbert
Michael Chiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
内源性逆转录病毒MER65-int调控人类胎
盘发育与子宫内膜重塑的功能研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
隐秘重组信号序列INT-RSS在T细胞受体基因Tcra重排中的功能和机制研究
- 批准号:32370939
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
HPV16 E7 通过 Int1 蛋白调控 Wnt 信号通路调节肿瘤局部树突状细胞活性
- 批准号:LQ22H160033
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
选择性PPARγ激动剂INT131调控适应性产热和AD-MSCs分化成棕色样脂肪细胞的机制研究
- 批准号:81903680
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
INT复合物调节U snRNA 3'加工的结构基础
- 批准号:31800624
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
沉默Int6基因的骨髓间充质干细胞复合生物支架构建血管化腹股沟疝补片及其促补片血管化机制
- 批准号:81371698
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
HIF/Int6调控迟发型EPC体外增殖的机制及其治疗重度子痫前期的可行性
- 批准号:81100439
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2343183 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: DeepSense: Interpretable Deep Learning for Zero-effort Phenotype Sensing and Its Application to Sleep Medicine
SCH:INT:合作研究:DeepSense:零努力表型感知的可解释深度学习及其在睡眠医学中的应用
- 批准号:
2313481 - 财政年份:2022
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10573225 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
SCH: INT: Collaborative Research: Context-Adaptive Multimodal Informatics for Psychiatric Discharge Planning
SCH:INT:合作研究:用于精神病出院计划的上下文自适应多模态信息学
- 批准号:
10392429 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
SCH: INT: Collaborative Research: Using Multi-Stage Learning to Prioritize Mental Health
SCH:INT:协作研究:利用多阶段学习优先考虑心理健康
- 批准号:
2124270 - 财政年份:2021
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014554 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: Privacy-Preserving Federated Transfer Learning for Early Acute Kidney Injury Risk Prediction
SCH:INT:合作研究:用于早期急性肾损伤风险预测的隐私保护联合迁移学习
- 批准号:
2014552 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2019389 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013651 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant
SCH: INT: Collaborative Research: An Intelligent Pervasive Augmented reaLity therapy (iPAL) for Opioid Use Disorder and Recovery
SCH:INT:合作研究:针对阿片类药物使用障碍和恢复的智能普遍增强现实疗法 (iPAL)
- 批准号:
2013122 - 财政年份:2020
- 资助金额:
$ 40.74万 - 项目类别:
Standard Grant