Conferences: Southern California Geometric Analysis Seminar; Winter-2017; 2018; 2019; University of California-San Diego and University of California, Irvine

会议:南加州几何分析研讨会;

基本信息

  • 批准号:
    1623782
  • 负责人:
  • 金额:
    $ 7.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

Differential geometry studies the spatial properties of spaces, which includes the physical space-time in which the human beings live, by Einstein's theory of general relativity. These spatial properties have fundamental impact on all physical events happening. Many problems in science can also be formulated in terms of geometry. Geometric analysis uses the analysis and the partial differential equation as a tool to study analytic, geometric and topological properties of the spaces. It is an important part of modern mathematics and is related to many other branches of mathematics. It has solved a large number of problems in global geometry, topology, several complex variables and mathematical physics. The Southern California Geometric Analysis Seminar (SCGAS) is an annual two-day conference that rotates between the University of California - Irvine and the University of California - San Diego. The conference features talks given by world leaders. The Seminar promotes interaction among mathematicians in Southern California who are interested in geometric analysis and related areas and to introduce graduate students and post-docs to some of the best works in geometric analysis. This funding award is geared towards supporting and encouraging the participation of graduate students and recent PhDs, especially women and under-represented minorities, by providing them the necessary travel support to attend the conference. Geometric analysis is an important area of modern mathematics and is related to many other branches of mathematics. Using the analysis and the partial differential equations as its main tools with differential geometry, topology, and algebraic geometry as foundations, geometric analysis has solved a large number of problems in global geometry, topology, several complex variables and mathematical physics. One example is the resolution of the celebrated Poincare conjecture via the study of the Ricci flow. As the success of the first twenty three meetings have demonstrated, the SCGAS conference has now become an important and anticipated event for the southern California region and has also attracted a substantial number of participants from the rest of the country each year. Indeed, it is the unique annual meeting of its kind in the southern California area, and continues to foster interests in geometric analysis at all levels. In the years past, interactions among the participants during the conference have led to a number of new collaborations and research projects. Web sites for the Southern California Geometric Analysis Seminar may be found at https://math.ucsd.edu/~scgas/ and http://www.math.uci.edu/~scgas/.
微分几何以爱因斯坦的广义相对论为基础,研究空间的空间性质,包括人类生存的物理时空。这些空间属性对所有物理事件的发生具有根本性的影响。 科学中的许多问题也可以用几何学来表述。几何分析使用分析和偏微分方程作为工具来研究空间的分析,几何和拓扑性质。 它是现代数学的一个重要组成部分,与数学的许多其他分支都有联系。它解决了大量的问题,在全球几何,拓扑,多复变和数学物理。南加州几何分析研讨会(SCGAS)是一个为期两天的年度会议,在加州-欧文大学和加州-圣地亚哥大学之间轮流举行。 这次会议的特点是由世界各国领导人发表演讲。 该研讨会促进了南加州数学家之间的互动,他们对几何分析和相关领域感兴趣,并向研究生和博士后介绍了几何分析中的一些最佳作品。该资助奖旨在支持和鼓励研究生和最近的博士生,特别是妇女和代表性不足的少数民族的参与,为他们提供必要的旅行支持参加会议。 几何分析是现代数学的一个重要领域,它与许多其他数学分支都有联系。几何分析以分析和偏微分方程为主要工具,以微分几何、拓扑学和代数几何为基础,解决了大量的整体几何、拓扑学、多复变和数学物理问题。一个例子是著名的庞加莱猜想的决议通过研究里奇流。正如前23次会议的成功所证明的那样,SCGAS会议现在已经成为南加州地区的一个重要和预期的活动,每年也吸引了来自全国其他地区的大量参与者。事实上,这是独特的年度会议,其在南加州地区,并继续培养兴趣的几何分析在各个层面。在过去的几年里,与会者在会议期间的互动导致了一些新的合作和研究项目。 南加州几何分析研讨会的网站可以在https://math.ucsd.edu/~scgas/和http://www.math.uci.edu/~scgas/上找到。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Ni其他文献

Pyrolysis mechanism and thermal hazard essence investigation using thermal analysis coupled with quantum-chemical DFT simulation for 1-butyl-2,3-dimethylimidazolium nitrate
热分析结合量子化学 DFT 模拟研究 1-丁基-2,3-二甲基咪唑硝酸盐的热解机理和热危害本质
  • DOI:
    10.1016/j.molliq.2022.119850
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Zhang;Jun-Cheng Jiang;Lei Ni;Shang-Hao Liu
  • 通讯作者:
    Shang-Hao Liu
PHY-Aided Secure Communication via Weighted Fractional Fourier Transform, Wireless Communications and Mobile Computing
通过加权分数傅里叶变换、无线通信和移动计算实现 PHY 辅助安全通信
Process safety assessment of semibatch nitration of naphthalene with mixed acid to 1‐nitronaphthalene
萘混酸半间歇硝化制1-硝基萘工艺安全评价
  • DOI:
    10.1002/aic.17679
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jun Liang;Lei Ni;Peihong Wu;Hang Yao;Qiang Chen;Gang Fu;Juncheng Jiang
  • 通讯作者:
    Juncheng Jiang
Thermal hazard characteristics and essential mechanism study of 1-hydroxybenzotriazole: Thermodynamic study combined DFT simulation
1-羟基苯并三唑的热危险特性及本质机理研究:热力学研究结合DFT模拟
Scale-up and safety of toluene nitration in a meso-scale flow reactor
中尺度流动反应器中甲苯硝化的放大和安全性
  • DOI:
    10.1016/j.psep.2022.02.036
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Gang Fu;Lei Ni;Dan Wei;Juncheng Jiang;Zhiquan Chen;Yong Pan
  • 通讯作者:
    Yong Pan

Lei Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Ni', 18)}}的其他基金

Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
  • 批准号:
    2406732
  • 财政年份:
    2024
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Linear and nonlinear geometric evolution equations
线性和非线性几何演化方程
  • 批准号:
    1401500
  • 财政年份:
    2014
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Geometric flows on Riemannian and Kaehler manifolds
黎曼流形和凯勒流形上的几何流
  • 批准号:
    1105549
  • 财政年份:
    2011
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
  • 批准号:
    1006180
  • 财政年份:
    2010
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Nonlinear geometric evolution equations
非线性几何演化方程
  • 批准号:
    0805143
  • 财政年份:
    2008
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Parabolic Equations and the Geometry of Complete Kaehler Manifolds
抛物线方程和完全凯勒流形的几何
  • 批准号:
    0504792
  • 财政年份:
    2005
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
  • 批准号:
    0203023
  • 财政年份:
    2002
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
  • 批准号:
    0328624
  • 财政年份:
    2002
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
  • 批准号:
    0196405
  • 财政年份:
    2001
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
  • 批准号:
    9970284
  • 财政年份:
    1999
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
  • 批准号:
    2406732
  • 财政年份:
    2024
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
  • 批准号:
    2231662
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Continuing Grant
CC* Regional Computing: Building Cyberinfrastructure to Forge a Regional Research Computing Alliance in Southern California
CC* 区域计算:建设网络基础设施以在南加州建立区域研究计算联盟
  • 批准号:
    2232917
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
IUCRC Planning Grant University of Southern California: Center for CO2 Storage Modeling, Analytics, and Risk Reduction Technologies (CO2-Smart)
IUCRC 规划拨款南加州大学:二氧化碳封存建模、分析和风险降低技术中心 (CO2-Smart)
  • 批准号:
    2231665
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Southern California Clinical and Translational Science Institute
南加州临床与转化科学研究所
  • 批准号:
    10700623
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
REU Site: Coastal Ocean Research through the University of Southern California Wrigley Institute for Environmental Studies
REU 网站:南加州大学瑞格利环境研究所的沿海海洋研究
  • 批准号:
    2244583
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Continuing Grant
KATRITCH- UNIVERSITY OF SOUTHERN CALIFORNIA DMFP FOR BPN-35269 - CURIA GLOBAL, INC.
KATRITCH- 南加州大学 DMFP 用于 BPN-35269 - CURIA GLOBAL, INC.
  • 批准号:
    10949745
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
IUCRC Phase I University of Southern California: Center for Soil Technologies (SoilTech), Lead Site
IUCRC 第一阶段南加州大学:土壤技术中心 (SoilTech),牵头站点
  • 批准号:
    2231659
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Continuing Grant
Conference: Southern California Probability Symposium
会议:南加州概率研讨会
  • 批准号:
    2318731
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
Southern California Geometric Analysis Seminar, Winter 2023
南加州几何分析研讨会,2023 年冬季
  • 批准号:
    2236605
  • 财政年份:
    2023
  • 资助金额:
    $ 7.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了