Parabolic Equations and the Geometry of Complete Kaehler Manifolds

抛物线方程和完全凯勒流形的几何

基本信息

  • 批准号:
    0504792
  • 负责人:
  • 金额:
    $ 8.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-07-01 至 2008-06-30
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-0504792Principal Investigator: Lei NiThe principle investigator proposes to study the interplaybetween the geometry and the analysis on complete Kaehlermanifolds. The focus will be the linear and nonlinear parabolicequations on complete manifolds with various curvatureassumptions. These equations includes the linear heat equationand Laplacian operator, harmonic mapping heat equation, meancurvature flow, Hermitian-Einstein flow, Ricci/Kaehler-Ricciflow, etc. These equations have various physical and geometricorigins. But they share many common features such as geometricsymmetries and identities, monotonicity formulae, entropy likeconsiderations, differential Harnack (also calledLi-Yau-Hamilton) inequalities. They also connect to each otherin various ways. By studying them together, more light is shedon all of them.Differential Geometry is the study of the relationship betweenthe geometry of a space, a manifold in the mathematical notion,and the analytic properties of the functions and the differentialequations, on the underlying space. Geometric analysis is thestudy of the overall geometric and topological properties of aspace by piecing together the local information. Since the spacesare usually curved ones, the ``curvature" was introduced tomeasure the deviation from the Euclidean space and the techniquesare often `nonlinear' even dealing with a linear problem. Thestudy of this area of mathematics has close connection with thegeneral relativity and string theory in physics. The applicationscan be found in the study of thestructure of complicatedmolecules, liquid-gas boundaries, and even the large scalenetworks. This project on studying the Kaehler manifolds vialinear and nonlinear parabolic equations will enhance theunderstanding of geometric analysis, linear and nonlinear partialdifferential equations, algebraic geometry and mathematicalphysics.
摘要:项目负责人:倪磊,主要研究完全kaehler流形几何与分析之间的相互作用。重点将是具有各种曲率假设的完全流形上的线性和非线性抛物方程。这些方程包括线性热方程和拉普拉斯算子、调和映射热方程、平均温度流、埃尔米特-爱因斯坦流、里奇/凯勒-里奇流等。这些方程有不同的物理和几何根源。但它们有许多共同的特征,如几何对称性和恒等式,单调性公式,熵样考虑,微分哈纳克(也称为李尧-汉密尔顿)不等式。它们也以各种方式相互连接。通过一起研究它们,更多的光被照射到它们身上。微分几何是研究空间的几何关系,数学概念中的流形,以及底层空间上的函数和微分方程的解析性质。几何分析是通过拼凑局部信息来研究空间的整体几何和拓扑性质。由于空间通常是弯曲的,因此引入“曲率”来测量与欧几里得空间的偏差,即使处理线性问题,技术也往往是“非线性的”。这一数学领域的研究与物理学中的广义相对论和弦理论有着密切的联系。应用于复杂分子结构、液气边界、甚至大规模网络的研究。本课题对Kaehler流形的线性和非线性抛物方程的研究将加强对几何分析、线性和非线性偏微分方程、代数几何和数学物理的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Ni其他文献

Predicting the superheat limit temperature of binary mixtures based on the quantitative structure property relationship
基于定量结构性质关系预测二元混合物的过热极限温度
Thermal hazard characteristics and essential mechanism study of 1-hydroxybenzotriazole: Thermodynamic study combined DFT simulation
1-羟基苯并三唑的热危险特性及本质机理研究:热力学研究结合DFT模拟
Process safety assessment of semibatch nitration of naphthalene with mixed acid to 1‐nitronaphthalene
萘混酸半间歇硝化制1-硝基萘工艺安全评价
  • DOI:
    10.1002/aic.17679
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Jun Liang;Lei Ni;Peihong Wu;Hang Yao;Qiang Chen;Gang Fu;Juncheng Jiang
  • 通讯作者:
    Juncheng Jiang
Pyrolysis mechanism and thermal hazard essence investigation using thermal analysis coupled with quantum-chemical DFT simulation for 1-butyl-2,3-dimethylimidazolium nitrate
热分析结合量子化学 DFT 模拟研究 1-丁基-2,3-二甲基咪唑硝酸盐的热解机理和热危害本质
  • DOI:
    10.1016/j.molliq.2022.119850
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Zhang;Jun-Cheng Jiang;Lei Ni;Shang-Hao Liu
  • 通讯作者:
    Shang-Hao Liu
Hyperbolic geometry and 3-manifolds
双曲几何和 3 流形
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Chow;Sun;David Glickenstein;Christine Guenther;J. Isenberg;Tom Ivey;Dan Knopf;P. Lu;Feng Luo;Lei Ni
  • 通讯作者:
    Lei Ni

Lei Ni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Ni', 18)}}的其他基金

Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
  • 批准号:
    2406732
  • 财政年份:
    2024
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Conferences: Southern California Geometric Analysis Seminar; Winter-2017; 2018; 2019; University of California-San Diego and University of California, Irvine
会议:南加州几何分析研讨会;
  • 批准号:
    1623782
  • 财政年份:
    2016
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
Linear and nonlinear geometric evolution equations
线性和非线性几何演化方程
  • 批准号:
    1401500
  • 财政年份:
    2014
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Geometric flows on Riemannian and Kaehler manifolds
黎曼流形和凯勒流形上的几何流
  • 批准号:
    1105549
  • 财政年份:
    2011
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
  • 批准号:
    1006180
  • 财政年份:
    2010
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Nonlinear geometric evolution equations
非线性几何演化方程
  • 批准号:
    0805143
  • 财政年份:
    2008
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
  • 批准号:
    0203023
  • 财政年份:
    2002
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
  • 批准号:
    0328624
  • 财政年份:
    2002
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
  • 批准号:
    0196405
  • 财政年份:
    2001
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
  • 批准号:
    9970284
  • 财政年份:
    1999
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant

相似海外基金

(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
  • 批准号:
    22H00094
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Differential Equations in Complex Riemannian Geometry
复杂黎曼几何中的微分方程
  • 批准号:
    2203607
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
  • 批准号:
    2153846
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
Fully nonlinear equations in geometry and general relativity
几何和广义相对论中的完全非线性方程
  • 批准号:
    RGPIN-2020-06756
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
  • 批准号:
    2231783
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
Microlocal Analysis and Monge-Ampère Type Equations in Geometry
几何中的微局域分析和 Monge-Ampère 型方程
  • 批准号:
    2204347
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Standard Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
  • 批准号:
    2203273
  • 财政年份:
    2022
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
Study on local functional equations form representation theory and geometry
局部函数方程形式表示论与几何的研究
  • 批准号:
    21K03169
  • 财政年份:
    2021
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evolution equations in geometry and related fields
几何及相关领域的演化方程
  • 批准号:
    2104349
  • 财政年份:
    2021
  • 资助金额:
    $ 8.63万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了