Linear and nonlinear geometric evolution equations
线性和非线性几何演化方程
基本信息
- 批准号:1401500
- 负责人:
- 金额:$ 16.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Differential geometry studies the topological, geometric and analytic properties of the spaces. Since all physical events take places in a space, by Einstein's relativity the spatial metric properties of the underlying space have fundamental impacts on the physical events happening in the space, including the very one we live in. This relation places the subject of the differential geometry in a central position of the mathematics and some fundamental issues of sciences. Modern differential geometry appeals to the theory/methods of linear and nonlinear partial differential equations. The proposal involves the study of differential geometry via the method of the evolutional partial differential equations with the focus on the study of the entropy, the monotonicity, and related sharp differential estimates motives by thermodynamics and statistical mechanics. The study of Gauss curvature flow has important consequences on the subjects of the image processing, affine differential geometry and convex geometry. The study of the Ricci flow in the proposal advances the understanding of the differential topological structure of the spaces and is related to the theoretic physics with direct bearing on the high energy physics. The resolving of the problems involved in the proposal advances the above mentioned related subjects in sciences. The out-reach components of the proposal disseminate the new results to general public and contributes towards the mathematical education in the community in the greater area of San Diego and beyond. It also contributes to the training and the early career development of under-represented groups. The technical aspects of the proposal involve the development of the sharp monotonicity of the entropy and related sharp point wise estimates. The study of differential geometric problems relies on solving evolution equations such as the Ricci flow equation, Gauss curvature flow equation or other nonlinear evolution equations, and/or the study of delicate properties of the solutions obtained. The theory of modern partial differential equations reduces the study of the solutions of various linear and nonlinear equations to the monotonicity of certain entropic quantities and related point wise estimates. The de-regularizing estimates proposed in this proposal broadens the scope of the already far-reaching gradient estimates, Hessian estimates and curvature estimates techniques developed in the last several decades to more general settings, by requiring less regularity of the solutions involved, while encoding far more geometric information. They have produced and will produce much powerful geometric consequences. The techniques developed can in turn advances the study of the related partial differential equations, which usually occupies a central role in the theory of the partial differential equations.
微分几何研究空间的拓扑、几何和解析性质。由于所有物理事件都发生在一个空间中,根据爱因斯坦的相对论,底层空间的空间度规属性对发生在空间中的物理事件有根本影响,包括我们生活的那个空间。这种关系使微分几何这门学科在数学和一些基本科学问题中处于中心位置。现代微分几何要求线性和非线性偏微分方程解的理论和方法。该方案涉及用演化偏微分方程组的方法研究微分几何,重点是用热力学和统计力学研究熵、单调性和相关的尖锐微分估计动机。高斯曲率流的研究在图像处理、仿射微分几何和凸几何等学科中具有重要的意义。文中对Ricci流的研究,加深了对空间微分拓扑结构的理解,与高能物理有着直接的理论联系。提案中涉及的问题的解决,推进了上述科学相关学科的发展。该提案的外展部分向公众传播新的成果,并为圣地亚哥及其他地区社区的数学教育作出贡献。它还有助于对任职人数不足的群体进行培训和早期职业发展。该方案的技术方面涉及发展信息熵的尖锐单调性和相关的尖锐的逐点估计。微分几何问题的研究依赖于求解发展方程,如Ricci流动方程、Gauss曲率流动方程或其他非线性发展方程,和/或研究所获得的解的精细性质。现代偏微分方程组理论将对各种线性和非线性方程的解的研究归结为某些熵的单调性和相关的逐点估计。该建议中提出的去正则化估计将过去几十年开发的已经影响深远的梯度估计、黑森估计和曲率估计技术的范围扩大到更一般的设置,因为所涉及的解的规则性较低,而编码的几何信息要多得多。它们已经产生并将产生更强大的几何后果。所发展的技术反过来可以促进对相关偏微分方程组的研究,而偏微分方程组通常在偏微分方程组理论中占据核心地位。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Ni其他文献
Predicting the superheat limit temperature of binary mixtures based on the quantitative structure property relationship
基于定量结构性质关系预测二元混合物的过热极限温度
- DOI:
10.1016/j.jlp.2016.06.022 - 发表时间:
2016-09 - 期刊:
- 影响因子:3.5
- 作者:
Lulu Zhou;Juncheng Jiang;Lei Ni;Yong Pan;Jun Yao;Zhirong Wang - 通讯作者:
Zhirong Wang
Thermal hazard characteristics and essential mechanism study of 1-hydroxybenzotriazole: Thermodynamic study combined DFT simulation
1-羟基苯并三唑的热危险特性及本质机理研究:热力学研究结合DFT模拟
- DOI:
10.1016/j.psep.2022.10.043 - 发表时间:
2022-10 - 期刊:
- 影响因子:7.8
- 作者:
Han Zhang;Juncheng Jiang;Miao Fei;Lei Ni;Yao Hang - 通讯作者:
Yao Hang
Process safety assessment of semibatch nitration of naphthalene with mixed acid to 1‐nitronaphthalene
萘混酸半间歇硝化制1-硝基萘工艺安全评价
- DOI:
10.1002/aic.17679 - 发表时间:
2022 - 期刊:
- 影响因子:3.7
- 作者:
Jun Liang;Lei Ni;Peihong Wu;Hang Yao;Qiang Chen;Gang Fu;Juncheng Jiang - 通讯作者:
Juncheng Jiang
Pyrolysis mechanism and thermal hazard essence investigation using thermal analysis coupled with quantum-chemical DFT simulation for 1-butyl-2,3-dimethylimidazolium nitrate
热分析结合量子化学 DFT 模拟研究 1-丁基-2,3-二甲基咪唑硝酸盐的热解机理和热危害本质
- DOI:
10.1016/j.molliq.2022.119850 - 发表时间:
2022-07 - 期刊:
- 影响因子:0
- 作者:
Han Zhang;Jun-Cheng Jiang;Lei Ni;Shang-Hao Liu - 通讯作者:
Shang-Hao Liu
Hyperbolic geometry and 3-manifolds
双曲几何和 3 流形
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Chow;Sun;David Glickenstein;Christine Guenther;J. Isenberg;Tom Ivey;Dan Knopf;P. Lu;Feng Luo;Lei Ni - 通讯作者:
Lei Ni
Lei Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Ni', 18)}}的其他基金
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Conferences: Southern California Geometric Analysis Seminar; Winter-2017; 2018; 2019; University of California-San Diego and University of California, Irvine
会议:南加州几何分析研讨会;
- 批准号:
1623782 - 财政年份:2016
- 资助金额:
$ 16.67万 - 项目类别:
Continuing Grant
Geometric flows on Riemannian and Kaehler manifolds
黎曼流形和凯勒流形上的几何流
- 批准号:
1105549 - 财政年份:2011
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
- 批准号:
1006180 - 财政年份:2010
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Nonlinear geometric evolution equations
非线性几何演化方程
- 批准号:
0805143 - 财政年份:2008
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Parabolic Equations and the Geometry of Complete Kaehler Manifolds
抛物线方程和完全凯勒流形的几何
- 批准号:
0504792 - 财政年份:2005
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
- 批准号:
0203023 - 财政年份:2002
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
- 批准号:
0328624 - 财政年份:2002
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
- 批准号:
0196405 - 财政年份:2001
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
- 批准号:
9970284 - 财政年份:1999
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
相似国自然基金
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
低杂波加热的全波解TORIC数值模拟以及动理论GeFi粒子模拟
- 批准号:11105178
- 批准年份:2011
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非线性发展方程及其吸引子
- 批准号:10871040
- 批准年份:2008
- 资助金额:27.0 万元
- 项目类别:面上项目
大型机械结构非线性特性的实验辨识和物理仿真
- 批准号:50405043
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
半导体中激子的量子非线性光学的研究
- 批准号:10474025
- 批准年份:2004
- 资助金额:25.0 万元
- 项目类别:面上项目
经济复杂系统的非稳态时间序列分析及非线性演化动力学理论
- 批准号:70471078
- 批准年份:2004
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2022
- 资助金额:
$ 16.67万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear and geometric effects in quantum condensed matter systems
量子凝聚态物质系统中的非线性和几何效应
- 批准号:
2116767 - 财政年份:2022
- 资助金额:
$ 16.67万 - 项目类别:
Continuing Grant
Study on the nonlinear geometric heat flow via a geometric analysis approach
通过几何分析方法研究非线性几何热流
- 批准号:
21K13824 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
- 批准号:
2054184 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
Standard Grant
Geometric, topological, and stochastic approaches in nonlinear control theory
非线性控制理论中的几何、拓扑和随机方法
- 批准号:
RGPIN-2016-05405 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
- 批准号:
RGPIN-2016-03922 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
Discovery Grants Program - Individual
Isometric embeddings, isoperimetric inequalities and geometric nonlinear PDE
等距嵌入、等周不等式和几何非线性 PDE
- 批准号:
RGPIN-2018-04443 - 财政年份:2021
- 资助金额:
$ 16.67万 - 项目类别:
Discovery Grants Program - Individual
A Novel Geometric Approach to Shocks in Reaction-Nonlinear Diffusion Models
反应非线性扩散模型中激波的一种新颖的几何方法
- 批准号:
DP200102130 - 财政年份:2020
- 资助金额:
$ 16.67万 - 项目类别:
Discovery Projects
Fourth order geometric evolution equations with nonlinear boundary conditions
具有非线性边界条件的四阶几何演化方程
- 批准号:
442279986 - 财政年份:2020
- 资助金额:
$ 16.67万 - 项目类别:
Research Fellowships