Geometric flows on Riemannian and Kaehler manifolds
黎曼流形和凯勒流形上的几何流
基本信息
- 批准号:1105549
- 负责人:
- 金额:$ 14.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The first part of the project is about the geometric and analytic properties of the Ricci flow equation and their applications to the study of geometry. Namely to study the classifications of self-similar solutions, e.g gradient solitons and ancient solutions, as well as the convexity type estimates in general. Such results have far-reaching consequences in the singularity analysis, and applications of Ricci flow in the study of geometric-topological structure of the manifolds. The second theme of the project is on the sharp gradient estimates of Li-Yau-Hamilton type, related monotonicity formulae and applications in geometric nonlinear PDEs. Their relations to physics, statistical mechanics will be studied too. The aim is to discover a fundamental physical/geometric principle to unify various sharp estimates and monotonicity formulae. It will also provide the guideline for further discovery of the new monotonicity formulae in other geometric PDEs.Since all physical event takes place in a space, the subject of differential geometry which studies the geometric properties of the space has important consequence in every physical event. This project mainly involves the study of partial differential equations of parabolic type which arise from differential geometry, and their applications to the understanding of various geometric/topological properties of manifolds. This area lies in the center of the current mathematics. It naturally connects various area of mathematics, such as topology, Riemannian geometry, partial differential geometry, Lie groups, as well as mathematical physics. The techniques developed can be useful in understanding problems in economics, material sciences and bio-sciences.
第一部分是关于Ricci流方程的几何和解析性质及其在几何研究中的应用。即研究自相似解的分类,如梯度孤子和古解,以及一般的凸型估计。这些结果在奇点分析以及Ricci流在流形的几何拓扑结构研究中的应用方面具有深远的意义。第二个主题是Li-Yau-汉密尔顿型的锐梯度估计,相关的单调性公式及其在几何非线性偏微分方程中的应用。同时也将研究它们与物理学、统计力学的关系。目的是发现一个基本的物理/几何原理,统一各种尖锐的估计和单调性公式。这也将为进一步发现其他几何偏微分方程的新单调性公式提供指导。由于所有的物理事件都发生在一个空间中,研究空间几何性质的微分几何学科在任何物理事件中都有重要的意义。本专题主要研究微分几何中的抛物型偏微分方程及其在理解流形的各种几何/拓扑性质中的应用。这一领域是当前数学的中心。它自然地连接了数学的各个领域,如拓扑学、黎曼几何、偏微分几何、李群以及数学物理。所开发的技术可用于理解经济学、材料科学和生物科学中的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Ni其他文献
Predicting the superheat limit temperature of binary mixtures based on the quantitative structure property relationship
基于定量结构性质关系预测二元混合物的过热极限温度
- DOI:
10.1016/j.jlp.2016.06.022 - 发表时间:
2016-09 - 期刊:
- 影响因子:3.5
- 作者:
Lulu Zhou;Juncheng Jiang;Lei Ni;Yong Pan;Jun Yao;Zhirong Wang - 通讯作者:
Zhirong Wang
Thermal hazard characteristics and essential mechanism study of 1-hydroxybenzotriazole: Thermodynamic study combined DFT simulation
1-羟基苯并三唑的热危险特性及本质机理研究:热力学研究结合DFT模拟
- DOI:
10.1016/j.psep.2022.10.043 - 发表时间:
2022-10 - 期刊:
- 影响因子:7.8
- 作者:
Han Zhang;Juncheng Jiang;Miao Fei;Lei Ni;Yao Hang - 通讯作者:
Yao Hang
Process safety assessment of semibatch nitration of naphthalene with mixed acid to 1‐nitronaphthalene
萘混酸半间歇硝化制1-硝基萘工艺安全评价
- DOI:
10.1002/aic.17679 - 发表时间:
2022 - 期刊:
- 影响因子:3.7
- 作者:
Jun Liang;Lei Ni;Peihong Wu;Hang Yao;Qiang Chen;Gang Fu;Juncheng Jiang - 通讯作者:
Juncheng Jiang
Pyrolysis mechanism and thermal hazard essence investigation using thermal analysis coupled with quantum-chemical DFT simulation for 1-butyl-2,3-dimethylimidazolium nitrate
热分析结合量子化学 DFT 模拟研究 1-丁基-2,3-二甲基咪唑硝酸盐的热解机理和热危害本质
- DOI:
10.1016/j.molliq.2022.119850 - 发表时间:
2022-07 - 期刊:
- 影响因子:0
- 作者:
Han Zhang;Jun-Cheng Jiang;Lei Ni;Shang-Hao Liu - 通讯作者:
Shang-Hao Liu
Hyperbolic geometry and 3-manifolds
双曲几何和 3 流形
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
B. Chow;Sun;David Glickenstein;Christine Guenther;J. Isenberg;Tom Ivey;Dan Knopf;P. Lu;Feng Luo;Lei Ni - 通讯作者:
Lei Ni
Lei Ni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Ni', 18)}}的其他基金
Conference: Southern California Geometric Analysis Seminar
会议:南加州几何分析研讨会
- 批准号:
2406732 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Conferences: Southern California Geometric Analysis Seminar; Winter-2017; 2018; 2019; University of California-San Diego and University of California, Irvine
会议:南加州几何分析研讨会;
- 批准号:
1623782 - 财政年份:2016
- 资助金额:
$ 14.85万 - 项目类别:
Continuing Grant
Linear and nonlinear geometric evolution equations
线性和非线性几何演化方程
- 批准号:
1401500 - 财政年份:2014
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Southern California Geometric Analysis Seminar
南加州几何分析研讨会
- 批准号:
1006180 - 财政年份:2010
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Nonlinear geometric evolution equations
非线性几何演化方程
- 批准号:
0805143 - 财政年份:2008
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Parabolic Equations and the Geometry of Complete Kaehler Manifolds
抛物线方程和完全凯勒流形的几何
- 批准号:
0504792 - 财政年份:2005
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
- 批准号:
0203023 - 财政年份:2002
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Linear and Nonlinear Analysis on Complete Kahler Manifolds
完全卡勒流形的线性和非线性分析
- 批准号:
0328624 - 财政年份:2002
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
- 批准号:
0196405 - 财政年份:2001
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Global Analysis on Complete Kahler Manifolds
完全卡勒流形的全局分析
- 批准号:
9970284 - 财政年份:1999
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
相似海外基金
Computing Lagrangian means in multi-timescale fluid flows
计算多时间尺度流体流动中的拉格朗日均值
- 批准号:
EP/Y021479/1 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Research Grant
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
- 批准号:
EP/Y029194/1 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Fellowship
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Conference: Geometric Flows and Relativity
会议:几何流和相对论
- 批准号:
2348273 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Conference: St. Louis Topology Conference: Flows and Foliations in 3-Manifolds
会议:圣路易斯拓扑会议:3 流形中的流动和叶理
- 批准号:
2350309 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant
Mesh-free methods for turbulent reacting flows: the next generation of DNS
用于湍流反应流的无网格方法:下一代 DNS
- 批准号:
EP/W005247/2 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Research Grant
SUPERSLUG: Deconstructing sediment superslugs as a legacy of extreme flows
SUPERSLUG:解构沉积物超级段塞作为极端流动的遗产
- 批准号:
NE/Z00022X/1 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Research Grant
CAREER: Turbulence-Resolving Integral Simulations for Boundary Layer Flows
职业:边界层流的湍流求解积分模拟
- 批准号:
2340121 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Continuing Grant
A reliable approach for the characterization of biologically-relevant cardiovascular flows
表征生物学相关心血管血流的可靠方法
- 批准号:
2908744 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Studentship
ERI: Experimental Investigation of Compressibility Effects on Turbulent Kinetic Energy Production in Supersonic Flows
ERI:压缩性对超音速流中湍动能产生的影响的实验研究
- 批准号:
2347416 - 财政年份:2024
- 资助金额:
$ 14.85万 - 项目类别:
Standard Grant