A Scaffolded Data-Centric Approach to Improved Learning of Introductory Computing Concepts
一种以数据为中心的脚手架方法,用于改进入门计算概念的学习
基本信息
- 批准号:1624320
- 负责人:
- 金额:$ 59.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The significance and importance of this project is the availability of improved science for teaching fundamental computational concepts both to students pursuing degrees in computer science and to students where computation plays a secondary but increasingly vital role in the practice of their discipline. The fundamental problem addressed by this project is the limited methods currently available to motivate and sustain student engagement in challenging parts of the learning process. Through the use of relevant and authentic data combined with an improved learning environment the project will achieve improvements in learning and, more broadly, will provide the "data literacy" increasingly critical in the economy and society. While advantageous for all students, these characteristics of realism are especially engaging for students in under-represented populations. The "big data" resources are useful not only in introductory courses but also for emerging data science courses. The project will develop a deep understanding of the impact on student motivation and learning of the project's interventions across diverse student populations. This understanding will influence curriculum design and help shape better pedagogical practices. The goal and scope of this project will be enhanced knowledge of, and extended technologies for, improving motivation and cognitive gains of students learning introductory computing concepts. The project will extend the catalog of available data sets, add authoring and curation tools enabling the efficient creation and restructuring of data sets, improve the ability of a student to search for a relevant data set, and provide scaffolding to allow early visualization of "big data". The project will extend a block-based visual programming environment, BlockPy, allowing mutual translation between Blockly and Python. The extension will add an instructor authoring tool and run-time support for immediate feedback on algorithm-based exercises that improves student learning and encourages student exploration of alternative algorithms. New visualizations will support student learning in any programming class using big data. These resources will be combined with other course elements in a robust web framework supporting many forms of distributed instructional delivery. The project will apply the Dick and Carey Instructional Design method to facilitate adoption by others and integrate detailed assessment of the curriculum.
该项目的意义和重要性在于,为攻读计算机科学学位的学生和计算在其学科实践中扮演次要但日益重要角色的学生提供了改进的科学来教授基本的计算概念。本项目解决的根本问题是目前可用的方法有限,无法激励和维持学生在学习过程中具有挑战性的部分的参与。通过使用相关和真实的数据,结合改善的学习环境,该项目将改善学习,更广泛地说,将提供在经济和社会中日益重要的“数据素养”。虽然对所有学生都有利,但现实主义的这些特点对代表性不足的学生尤其有吸引力。“大数据”资源不仅对入门课程有用,而且对新兴的数据科学课程也有用。该项目将深入了解对不同学生群体的学生动机和学习项目干预措施的影响。这种理解将影响课程设计,并有助于形成更好的教学实践。该项目的目标和范围将是增强知识和扩展技术,提高学生学习入门计算概念的动机和认知收益。该项目将扩展可用数据集的目录,增加能够有效创建和重组数据集的创作和管理工具,提高学生搜索相关数据集的能力,并提供脚手架,以便早期实现“大数据”的可视化。该项目将扩展基于块的可视化编程环境BlockPy,允许在Blockly和Python之间进行相互翻译。该扩展将添加一个教师创作工具和运行时支持对基于算法的练习的即时反馈,以提高学生的学习,并鼓励学生探索替代算法。新的可视化将支持学生在任何使用大数据的编程课上学习。这些资源将与其他课程元素结合在一个强大的网络框架中,支持多种形式的分布式教学交付。该项目将采用迪克和凯里教学设计方法,以方便其他人采用,并整合课程的详细评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Kafura其他文献
Dennis Kafura的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Kafura', 18)}}的其他基金
TUES: EAGER: Scaffolding Big Data for Authentic Learning of Computing
周二:EAGER:为真实的计算学习搭建大数据支架
- 批准号:
1444094 - 财政年份:2014
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
BPC-A: Collaborative Research: Alliance between Historically Black Universities and Research Universities for Collaborative Education and Research in Computing Disciplines
BPC-A:合作研究:历史悠久的黑人大学和研究型大学之间的联盟,致力于计算学科的合作教育和研究
- 批准号:
0540509 - 财政年份:2006
- 资助金额:
$ 59.43万 - 项目类别:
Continuing Grant
Language and System Support for Object-Oriented Programming
面向对象编程的语言和系统支持
- 批准号:
9104013 - 财政年份:1991
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
Validation and Application of Software Metrics to Design and Maintenance
软件指标在设计和维护中的验证和应用
- 批准号:
8418257 - 财政年份:1985
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
Acquisition of Computer Research Equipment (Computer Science)
购置计算机研究设备(计算机科学)
- 批准号:
8404214 - 财政年份:1984
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
A Comprehensive Study of Software Metrics For Large-Scale Systems
大型系统软件指标的综合研究
- 批准号:
8207110 - 财政年份:1982
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
A Comprehensive Study of Software Metrics For Large-Scale Systems
大型系统软件指标的综合研究
- 批准号:
7902970 - 财政年份:1979
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Data-Centric Mobile Edge Platform for Resilient Logistics & Supply Chain
以数据为中心的移动边缘平台,实现弹性物流
- 批准号:
LP220200893 - 财政年份:2024
- 资助金额:
$ 59.43万 - 项目类别:
Linkage Projects
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10104323 - 财政年份:2024
- 资助金额:
$ 59.43万 - 项目类别:
EU-Funded
NEXT GENERATION TOOLS FOR GENOME-CENTRIC MULTIMODAL DATA INTEGRATION IN PERSONALISED CARDIOVASCULAR MEDICINE
用于个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
- 批准号:
10098097 - 财政年份:2024
- 资助金额:
$ 59.43万 - 项目类别:
EU-Funded
Decentralizing Trust in Data-Centric In-Network Computing using Collaborative Secure Computation
使用协作安全计算分散对以数据为中心的网络内计算的信任
- 批准号:
24K20769 - 财政年份:2024
- 资助金额:
$ 59.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
From Data to Discovery: BlokBIO's Vision of Transforming Genomic Research with User-Centric Intelligence Solutions
从数据到发现:BlokBIO 通过以用户为中心的智能解决方案转变基因组研究的愿景
- 批准号:
10109374 - 财政年份:2024
- 资助金额:
$ 59.43万 - 项目类别:
Launchpad
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320972 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320975 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320973 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Standard Grant
Fundamental Technologies for Machine Learning Centric Data Trading
以机器学习为中心的数据交易的基础技术
- 批准号:
22KJ1721 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Exploring and Exploiting Data-Centric Modeling for Fairness in Machine Learning
职业:探索和利用以数据为中心的建模以实现机器学习的公平性
- 批准号:
2239257 - 财政年份:2023
- 资助金额:
$ 59.43万 - 项目类别:
Continuing Grant