MRI: Development of a femtosecond angle-resolved electron spectroscopy system for mapping the 3D electronic structures and responses of functional materials and nanostructures

MRI:开发飞秒角分辨电子能谱系统,用于绘制功能材料和纳米结构的 3D 电子结构和响应

基本信息

  • 批准号:
    1625181
  • 负责人:
  • 金额:
    $ 97.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The ability to control and engineer complex materials and nanostructures is essential for enabling an array of technologies including: solar-energy harvesting, solar to fuel conversion, heat recovery, and the development of novel photoactive nanostructured materials and nanoelectronics devices used in computing and internet infrastructure. This project will overcome widely recognized major bottlenecks to progress by addressing the scarcity of experimental data on the changes of local properties in these functional materials or devices. This is enabled by using innovative accelerator-based approaches to manipulate the probe's dynamical properties to significantly enhance the intensity and time-resolution of an ultrafast electron probe system. The high-throughput of the present system is the ideal probe for unveiling transient photochemical processes due to its high sensitivity to charge states and its more direct accesses to local electronic structures and electron dynamics for pinpointing the origins of these local, transient electronic processes. Furthermore, the present system advantageously provides three-dimensional spectroscopy by high-energy beams that penetrate the bulk of samples and the ability to sample large energy dispersion and momentum distributions. These new capabilities are also relevant to understanding an array of complex materials issues of broad interest, including studies of high-temperature superconductors, phase transitions, and novel electronic switching devices. Scientific and technological progress will be enabled by a unique team of experts in accelerator and beam physics, radiofrequency cavity design and construction, femtosecond (one quadrillionth, or one millionth of one billionth, of a second) laser and electron beam technologies, and theoretical modeling for the development of this unique ultrahigh speed electron beam system. The outcome of this MRI will be potentially transformative for addressing Grand Challenge Problems in nanoscience and nanotechnology that are critical to the industrial and applied sector, in areas ranging from catalysis to photovoltaics and material synthesis. We envision that the successful development of such a technology will lead to a new generation of electron-based ultrafast spectroscopy systems that are economical enough to be widely replicated in individual industry or university-based laboratories .A novel ultrafast high-brightness electron spectrometer system will be designed and implemented to achieve high sensitivity and combined high momentum-energy resolution through innovative active energy compression technology to preserve the throughput of the femtosecond photo-activated electron beam. The new system, a prototype ultrafast angle-resolved electron spectroscopy system, will be the first of its kind to provide element-sensitive spectroscopic imaging of three-dimensional electronic structures in complex and nanostructured materials at ultrafast timescales. The new capabilities will provide needed high throughput, and access to bulk crystalline materials. Significantly broader reach in energy scales will be available, covering the entire Brillouin Zone of quantum and complex materials with three-dimensional electronic structures, thus providing a more universal method than existing approaches. It is also targeted to substantially enhance the temporal-momentum resolution and throughput of electron-based spectroscopy systems to ultimately allow studies of individual nanostructures and motifs. The resulting spectrometer will be well-suited for characterizing; radiation effects in materials, defects, and photo-responses in plasmonic and photovoltaic nanostructures; phase transitions of superconductors and complex, strongly correlated electron materials; and exploring novel phases of matter in extreme environments. Scientific and technological progress will be enabled by a unique team of experts in accelerator and beam physics, radiofrequency cavity design and construction, femtosecond laser and electron beam technologies, and theoretical modeling for the development of this unique femtosecond electron beam system. The outcome of this MRI will be potentially transformative for investigating ultrafast physical, chemical and materials electronic processes to understand and identify the emerging and functional properties of complex, nanostructured materials and devices for addressing Grand Challenge Problems in condensed matter physics, materials and chemistry. Such a capability is also of interest to the industrial and applied sector, in areas ranging from catalysis to photovoltaics and material synthesis. It is envisioned that the successful development of such a technology will lead to a new generation of electron-based ultrafast spectroscopy systems that are economical enough to be widely replicated in individual industrial or university-based laboratories for ultrafast materials research.
控制和设计复杂材料和纳米结构的能力对于实现一系列技术至关重要,这些技术包括:太阳能收集、太阳能到燃料的转换、热回收,以及用于计算和互联网基础设施的新型光活性纳米结构材料和纳米电子器件的开发。该项目将通过解决这些功能材料或设备中局部特性变化的实验数据的稀缺性,克服广泛认可的主要进展瓶颈。这是通过使用创新的基于加速器的方法来操纵探针的动态特性,以显着提高超快电子探针系统的强度和时间分辨率。本系统的高通量是揭示瞬态光化学过程的理想探针,因为它对电荷状态的高灵敏度,并且更直接地访问局部电子结构和电子动力学,以确定这些局部瞬态电子过程的起源。此外,本系统有利地提供了通过高能光束穿透大部分样品的三维光谱,以及对大能量色散和动量分布进行采样的能力。这些新能力也与理解一系列广泛感兴趣的复杂材料问题有关,包括高温超导体、相变和新型电子开关器件的研究。在加速器和束流物理、射频腔设计和建造、飞秒(千万亿分之一或十亿分之一秒的百万分之一)激光和电子束技术以及为开发这种独特的超高速电子束系统而进行的理论建模方面,一支独特的专家团队将推动科技进步。这次核磁共振成像的结果对于解决纳米科学和纳米技术的重大挑战问题具有潜在的变革性,这些问题对工业和应用领域至关重要,从催化到光伏和材料合成。我们设想,这种技术的成功开发将导致新一代基于电子的超快光谱系统,这种系统足够经济,可以在单个工业或大学实验室中广泛复制。设计并实现一种新型的超快高亮度电子能谱仪系统,通过创新的主动能量压缩技术实现高灵敏度和高动量-能量分辨率,以保持飞秒光激活电子束的吞吐量。新系统是一个原型超快角度分辨电子能谱系统,将是同类中第一个在超快时间尺度上为复杂和纳米结构材料的三维电子结构提供元素敏感光谱成像的系统。新的能力将提供所需的高吞吐量,并获得大块晶体材料。在能量尺度上的覆盖范围将大大扩大,覆盖量子和具有三维电子结构的复杂材料的整个布里渊区,从而提供比现有方法更通用的方法。它还旨在大幅提高电子基光谱系统的时间动量分辨率和吞吐量,最终允许研究单个纳米结构和基序。由此产生的光谱仪将非常适合于表征;等离子体和光伏纳米结构中材料、缺陷和光响应的辐射效应超导体和复杂强相关电子材料的相变;探索极端环境下物质的新形态。在加速器和束流物理、射频腔设计和建造、飞秒激光和电子束技术以及为开发这种独特的飞秒电子束系统而进行的理论建模方面,一支独特的专家团队将推动科技进步。这次核磁共振成像的结果将潜在地改变研究超快物理、化学和材料电子过程,以了解和识别复杂、纳米结构材料和器件的新兴和功能特性,以解决凝聚态物理、材料和化学中的重大挑战问题。工业和应用部门也对这种能力感兴趣,从催化到光伏和材料合成等领域。据设想,这种技术的成功开发将导致新一代基于电子的超快光谱系统,这种系统足够经济,可以在单个工业或大学实验室中广泛复制,用于超快材料研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chong-Yu Ruan其他文献

Molecular imaging at 1-femtosecond resolution
  • DOI:
    10.1126/science.aai8656
  • 发表时间:
    2016-10
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Chong-Yu Ruan
  • 通讯作者:
    Chong-Yu Ruan

Chong-Yu Ruan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chong-Yu Ruan', 18)}}的其他基金

MRI:Development of a femtosecond high brightness electron beam source for time-resolved electron diffraction and imaging
MRI:开发用于时间分辨电子衍射和成像的飞秒高亮度电子束源
  • 批准号:
    1126343
  • 财政年份:
    2011
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Beyond Crystallography: structure of nanostructured materials
合作研究:FRG:超越晶体学:纳米结构材料的结构
  • 批准号:
    0703940
  • 财政年份:
    2007
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Continuing Grant

相似国自然基金

水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
  • 批准号:
    32070202
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
  • 批准号:
    23H01422
  • 财政年份:
    2023
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of new methods for surface structuring of solid by time-space controlled femtosecond laser pulses
时空控制飞秒激光脉冲固体表面结构化新方法的开发
  • 批准号:
    22K04977
  • 财政年份:
    2022
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of mid-infrared femtosecond pulse laser using transition metal ion doped chalcogenides
过渡金属离子掺杂硫族化物中红外飞秒脉冲激光器的研制
  • 批准号:
    21J13586
  • 财政年份:
    2021
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of generation mechanism and propagation behavior of femtosecond laser-induced underwater shock wave, and development of microcapsules including gas bubbles for regenerative medicine
阐明飞秒激光诱导水下冲击波的产生机制和传播行为,以及用于再生医学的含气泡微胶囊的开发
  • 批准号:
    21H01252
  • 财政年份:
    2021
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Mass Production Technology for Medical Diagnostic Chips Using Femtosecond Laser Ablation and Inkjet Printing
飞秒激光烧蚀喷墨打印医疗诊断芯片量产技术开发
  • 批准号:
    21K03798
  • 财政年份:
    2021
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fiber optic hydrogen sensor by use of scattering array fabricated by femtosecond laser internal processing
飞秒激光内部加工散射阵列光纤氢传感器的研制
  • 批准号:
    20K14755
  • 财政年份:
    2020
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research of Electron pulse compression with THz resonator and development for femtosecond visualizing technique using scanning electron microscopy
太赫兹谐振器电子脉冲压缩研究及扫描电子显微镜飞秒可视化技术开发
  • 批准号:
    19H00847
  • 财政年份:
    2019
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of precision femtosecond laser processing method of glass by canceling stress wave
消除应力波的玻璃精密飞秒激光加工方法的研制
  • 批准号:
    19K23477
  • 财政年份:
    2019
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of high-performance Polycrystalline CVD diamond coated cutting tool edge with femtosecond laser
飞秒激光高性能多晶CVD金刚石涂层切削刀具刃口的开发
  • 批准号:
    19K14876
  • 财政年份:
    2019
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of two-photon photoacoustic microscopy with spatial overlap modulation of femtosecond optical pulse trains
飞秒光脉冲串空间重叠调制双光子光声显微镜的开发
  • 批准号:
    19K12787
  • 财政年份:
    2019
  • 资助金额:
    $ 97.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了