Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
基本信息
- 批准号:RGPIN-2017-05670
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our proposed research concentrates on developing tools of statistical inference, particularly for the selection of graphical models. Graphical models form an essential part of the statistician's toolbox. They find applications in various areas: in medicine to model the dependence between certain gene mutations and the existence of a disease, or in finance to model the dependence relationship between various stocks.
Graphical models are multivariate statistical models that model the dependence relationship between different variables by means of a graph. The vertices of the graph represent the variables while the edges between the vertices are a code for the dependence or independence between these variables. The variables considered can be continuous (Gaussian) or discrete (multinomial) and the graphs considered to represent the dependence relationship can be directed or undirected. In our research, we will consider four types of graphical models: Gaussian coloured undirected graphs, discrete directed acyclic graphs (abbreviated DAG), discrete undirected graphs and discrete heterogeneous graphs. Each type of graph is best adapted to represent certain data sets. Our research is aimed at selecting a model best representing a given data set, for the purpose of explanation and/or prediction.
1. Coloured Gaussian undirected models. These are classical graphical models with added equality restrictions on the relationship between given groups of variables. The additional constraints diminish the number of free parameters in our model. While this is a good thing because we have less parameters to estimate, it renders the classical graphical Gaussian methods impossible to apply. Our main aim is to give a new method of Bayesian model selection based on a process called a birth and death process.
2. DAG discrete models. A notoriously hard task is to do model selection in the space of such models. This task is hard because many graphs can represent the same dependence relationship between variables (we say that such models are Markov equivalent). The set of Markov equivalent DAGs can be represented by a graph called an essential graph. Using some recent result of ours, we want to reduce the search to a search in the space of essential graphs.
3. MTP2 discrete loglinear models . These are log-linear models with positive associations between the variables. We propose to do model selection through maximum likelihood estimation of the parameter of the model.
4. Discrete heterogeneous models are used to model the dependence relationship between given variables for k different subpopulations. We want to identify the similarities and differences between the k graphs underlying the subpopulations. High-dimensional discrete heterogeneous models have not been studied from a Bayesian perspective. Our radically different approach proposes to use the Parafac factorization of the k tables of probabilities.
我们建议的研究集中在开发统计推断工具,特别是图形模型的选择。图形模型是统计学家工具箱的重要组成部分。它们在各个领域都有应用:在医学上为某些基因突变与疾病存在之间的依赖关系建模,或在金融上为各种股票之间的依赖关系建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Massam, Helene其他文献
BAYES FACTORS AND THE GEOMETRY OF DISCRETE HIERARCHICAL LOGLINEAR MODELS
- DOI:
10.1214/12-aos974 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:4.5
- 作者:
Letac, Gerard;Massam, Helene - 通讯作者:
Massam, Helene
FLEXIBLE COVARIANCE ESTIMATION IN GRAPHICAL GAUSSIAN MODELS
- DOI:
10.1214/08-aos619 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:4.5
- 作者:
Rajaratnam, Bala;Massam, Helene;Carvalho, Carlos M. - 通讯作者:
Carvalho, Carlos M.
A CONJUGATE PRIOR FOR DISCRETE HIERARCHICAL LOG-LINEAR MODELS
- DOI:
10.1214/08-aos669 - 发表时间:
2009-12-01 - 期刊:
- 影响因子:4.5
- 作者:
Massam, Helene;Liu, Jinnan;Dobra, Adrian - 通讯作者:
Dobra, Adrian
Simulation of hyper-inverse Wishart distributions in graphical models
- DOI:
10.1093/biomet/asm056 - 发表时间:
2007-08-01 - 期刊:
- 影响因子:2.7
- 作者:
Carvalho, Carlos M.;Massam, Helene;West, Mike - 通讯作者:
West, Mike
Wishart distributions for decomposable graphs
- DOI:
10.1214/009053606000001235 - 发表时间:
2007-06-01 - 期刊:
- 影响因子:4.5
- 作者:
Letac, Gerard;Massam, Helene - 通讯作者:
Massam, Helene
Massam, Helene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Massam, Helene', 18)}}的其他基金
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
- 批准号:41105105
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
- 批准号:30830037
- 批准年份:2008
- 资助金额:190.0 万元
- 项目类别:重点项目
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Exploiting Graphical Optimization Models to Solve Discrete Decision Problems in Healthcare and Supply Chain Logistics
利用图形优化模型解决医疗保健和供应链物流中的离散决策问题
- 批准号:
RGPIN-2019-05941 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Graphical models: discrete, Gaussian, coloured, estimation and model selection
图形模型:离散、高斯、彩色、估计和模型选择
- 批准号:
RGPIN-2017-05670 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
- 批准号:
10178124 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
- 批准号:
10437665 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Graphical Gaussian and hierarchical discrete models
图解高斯模型和分层离散模型
- 批准号:
8947-2011 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Graphical Gaussian and hierarchical discrete models
图解高斯模型和分层离散模型
- 批准号:
8947-2011 - 财政年份:2014
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual