Modeling and Detection of Learning in Cognitive Diagnosis
认知诊断中学习的建模和检测
基本信息
- 批准号:1632023
- 负责人:
- 金额:$ 38.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will develop statistical models that describe the way students learn and will design efficient training methods to help them learn efficiently. The project will advance psychometric theory by developing dynamic cognitive diagnosis models that capture the skills a student has mastered in the course of his training. It will impact psychometric and educational methodology by improving the design of e-learning environments and intelligent tutoring systems, where students are trained in a large number of skills. One of the final products of this research will be publicly available software that will incorporate the methodologies to be developed in this work. The theoretical knowledge that will be gained in this project will be incorporated into the material of graduate-level courses that cover item response theory and sequential analysis. Two graduate students will play key roles in conducting this research, and undergraduate students will be involved in certain aspects of the project. The investigators will make every effort to include qualified students of underrepresented groups in these research activities. This research will address two fundamental questions. First, how do students acquire the skills to master a series of tasks? Second, how should these tasks be selected in real time in order to help students learn efficiently? The first question will be answered with the development of complex statistical models that are grounded in the theory of cognitive diagnosis. The second question will require the development of on-line algorithms for detecting quickly that a student has mastered a skill and for selecting the best possible tasks in order to facilitate learning. These algorithms will be developed through the fusion of statistical techniques from the fields of sequential change detection and experimental design. The methodologies developed to address these two distinct research questions will be merged by having the developed learning models inform the detection and task-selection algorithms. Overall, this project will consider statistical problems at the heart of educational and instructional practice, and it will highlight the interplay among the fields of cognitive diagnosis, latent class modeling, quickest change detection, and adaptive design.
该研究项目将开发描述学生学习方式的统计模型,并将设计有效的培训方法来帮助他们高效地学习。该项目将通过开发动态认知诊断模型来推进心理测量学理论,这些模型可以捕捉学生在训练过程中掌握的技能。它将通过改进电子学习环境和智能辅导系统的设计来影响心理测量学和教育方法,在这些系统中,学生可以接受大量技能的培训。这项研究的最终产品之一将是公开可用的软件,它将包含在这项工作中开发的方法。在这个项目中获得的理论知识将被纳入研究生水平课程的材料中,包括项目反应理论和序列分析。两名研究生将在进行这项研究中发挥关键作用,本科生将参与该项目的某些方面。调查人员将尽一切努力在这些研究活动中纳入代表性不足群体的合格学生。这项研究将解决两个基本问题。首先,学生如何获得掌握一系列任务的技能?其次,这些任务应该如何实时选择,以帮助学生有效地学习?第一个问题将在基于认知诊断理论的复杂统计模型的发展中得到解答。第二个问题将需要开发在线算法,以便快速检测学生是否掌握了一项技能,并选择可能的最佳任务以促进学习。这些算法将通过融合序列变化检测和实验设计领域的统计技术来开发。为解决这两个不同的研究问题而开发的方法将通过将开发的学习模型告知检测和任务选择算法而合并。总体而言,本项目将考虑教育和教学实践的核心统计问题,并将强调认知诊断、潜在类建模、最快变化检测和自适应设计等领域之间的相互作用。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Hidden Markov Model for Learning Trajectories in Cognitive Diagnosis With Application to Spatial Rotation Skills
- DOI:10.1177/0146621617721250
- 发表时间:2018-01-01
- 期刊:
- 影响因子:1.2
- 作者:Chen, Yinghan;Culpepper, Steven Andrew;Douglas, Jeffrey
- 通讯作者:Douglas, Jeffrey
Development and Application of an Exploratory Reduced Reparameterized Unified Model
- DOI:10.3102/1076998618791306
- 发表时间:2019-02-01
- 期刊:
- 影响因子:2.4
- 作者:Culpepper, Steven Andrew;Chen, Yinghan
- 通讯作者:Chen, Yinghan
Tracking Skill Acquisition With Cognitive Diagnosis Models: A Higher-Order, Hidden Markov Model With Covariates
- DOI:10.3102/1076998617719727
- 发表时间:2018-02-01
- 期刊:
- 影响因子:2.4
- 作者:Wang, Shiyu;Yang, Yan;Douglas, Jeffrey A.
- 通讯作者:Douglas, Jeffrey A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Fellouris其他文献
Asymptotic optimality of D-CuSum for quickest change detection under transient dynamics
D-CuSum 的渐近最优性用于瞬态动态下最快的变化检测
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shaofeng Zou;Georgios Fellouris;V. Veeravalli - 通讯作者:
V. Veeravalli
Statistical Foundations for Computerized Adaptive Testing with Response Revision
- DOI:
10.1007/s11336-019-09662-9 - 发表时间:
2019-06-01 - 期刊:
- 影响因子:3.100
- 作者:
Shiyu Wang;Georgios Fellouris;Hua-Hua Chang - 通讯作者:
Hua-Hua Chang
Asymptotically optimal, sequential, multiple testing procedures with prior information on the number of signals
渐进最优、顺序、多重测试程序,具有信号数量的先验信息
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yanglei Song;Georgios Fellouris - 通讯作者:
Georgios Fellouris
Decentralized sequential change detection with ordered CUSUMs
使用有序 CUSUM 进行分散式顺序变化检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sourabh Banerjee;Georgios Fellouris - 通讯作者:
Georgios Fellouris
Round Robin Active Sequential Change Detection for Dependent Multi-Channel Data
针对相关多通道数据的循环主动顺序变化检测
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
A. Chaudhuri;Georgios Fellouris;A. Tajer - 通讯作者:
A. Tajer
Georgios Fellouris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Fellouris', 18)}}的其他基金
AMPS: Collaborative Research: Efficient Algorithms for Ultra-Fast Detection of Power System Contingencies in the Transient Regime
AMPS:协作研究:瞬态状态下电力系统突发事件超快速检测的高效算法
- 批准号:
1736454 - 财政年份:2018
- 资助金额:
$ 38.96万 - 项目类别:
Continuing Grant
ATD: Collaborative Research: Efficient sampling for real-time detection and isolation of threats in networks
ATD:协作研究:实时检测和隔离网络威胁的高效采样
- 批准号:
1737962 - 财政年份:2017
- 资助金额:
$ 38.96万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 38.96万 - 项目类别:
Standard Grant
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
$ 38.96万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Enhancing Flood Detection and Mapping by Using PolSAR, Metaheuristic, and Deep Learning Algorithms
RII Track-4:@NASA:使用 PolSAR、元启发式和深度学习算法增强洪水检测和绘图
- 批准号:
2327253 - 财政年份:2024
- 资助金额:
$ 38.96万 - 项目类别:
Standard Grant
Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
- 批准号:
23K11222 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TruDetect: Trustworthy Deep-Learning based Hardware Trojan Detection
TruDetect:值得信赖的基于深度学习的硬件木马检测
- 批准号:
EP/X036960/1 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别:
Research Grant
D-ISN/Collaborative Research: Machine Learning to Improve Detection and Traceability of Forest Products using Stable Isotope Ratio Analysis (SIRA)
D-ISN/合作研究:利用稳定同位素比率分析 (SIRA) 提高林产品检测和可追溯性的机器学习
- 批准号:
2240403 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别:
Standard Grant
Learning Methods and Applications for Real-World Object Detection
现实世界物体检测的学习方法和应用
- 批准号:
23K16896 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 38.96万 - 项目类别: