ATD: Collaborative Research: Efficient sampling for real-time detection and isolation of threats in networks

ATD:协作研究:实时检测和隔离网络威胁的高效采样

基本信息

项目摘要

While modern technologies generate multiple, interconnected sources of data, which can be observed in nearly real time, physical constraints and budget limitations require efficient sampling of these data streams. Incorporating such constraints in the design of threat detection systems has the potential to lead to significant savings in resources. The goal of this project is to develop fundamental statistical theory and methods for the efficient, real-time sampling of networks, and the subsequent detection, identification and prevention of threats of different nature, such as terrorist activities and credit fraud. The developed methodologies will be tested on real-world data, where the underlying community structure in times of crisis will be discovered using cell-phone call records. The theoretical knowledge that will be gained in this project will be incorporated into the material of graduate-level courses that cover adaptive experimental design and sequential detection. Two graduate students will contribute significantly in this research. The project will make every effort to include qualified students of underrepresented groups in these research activities.This research will address two fundamental research questions: 1) how to detect and identify, in real time, anomalous clusters in network data subject to sampling constraints, and 2) how to efficiently allocate limited resources in order to delay or prevent the realization of threats from the identified anomalous clusters. The mathematical formulation of these questions leads to novel problems in network-based, adaptive experimental design and sequential detection, whose solutions require the creative combination of tools from various fields, such as statistical inference, sequential analysis, and information theory. The theory and methods developed in this work will guide the development of threat detection algorithms and will be tested in concrete applications, such as social networks in times of crisis that will be discovered based on cell-phone call data. Overall, this is a multidisciplinary proposal, spanning social sciences, statistics, and engineering, whose goal is to obtain an arsenal of efficient network sampling schemes and novel threat detection algorithms, grounded on a strong theoretical background.
虽然现代技术产生了多个相互关联的数据源,可以几乎实时地观察到,但物理限制和预算限制需要对这些数据流进行有效的采样。将这些限制纳入威胁检测系统的设计中,有可能大大节省资源。该项目的目标是发展基本的统计理论和方法,以便对网络进行有效、实时的抽样,并随后发现、确定和预防不同性质的威胁,如恐怖主义活动和信贷欺诈。开发的方法将在真实世界的数据上进行测试,在危机时期,将使用手机通话记录发现潜在的社区结构。将在这个项目中获得的理论知识将被纳入研究生水平课程的材料中,这些课程涵盖自适应实验设计和顺序检测。两名研究生将在这项研究中做出重大贡献。该项目将尽一切努力将符合条件的代表不足群体的学生纳入这些研究活动。本研究将解决两个基本研究问题:1)如何实时检测和识别受采样约束的网络数据中的异常簇;2)如何有效地分配有限的资源,以延迟或防止来自已识别的异常簇的威胁的实现。这些问题的数学表述导致了基于网络的自适应实验设计和序列检测的新问题,其解决方案需要来自不同领域的工具的创造性组合,如统计推理、序列分析和信息论。这项工作中开发的理论和方法将指导威胁检测算法的开发,并将在具体应用中进行测试,例如将根据手机通话数据发现的危机时期的社交网络。总体而言,这是一项跨越社会科学、统计学和工程学的多学科提案,其目标是在强大的理论背景基础上获得大量有效的网络采样方案和新颖的威胁检测算法。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential anomaly detection with observation control under a generalized error metric
在广义误差度量下通过观察控制进行顺序异常检测
Sequential multiple testing with generalized error control: An asymptotic optimality theory
具有广义误差控制的顺序多重测试:渐近最优理论
  • DOI:
    10.1214/18-aos1737
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Song, Yanglei;Fellouris, Georgios
  • 通讯作者:
    Fellouris, Georgios
Asymptotically optimal multistage tests for iid data
iid 数据的渐近最优多阶段测试
Sequential Detection and Isolation of a Correlated Pair
相关对的顺序检测和隔离
Sequential anomaly detection under sampling constraints
采样约束下的顺序异常检测
  • DOI:
    10.1109/tit.2022.3177142
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Tsopelakos, Aristomenis;Fellouris, Georgios
  • 通讯作者:
    Fellouris, Georgios
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Fellouris其他文献

Asymptotic optimality of D-CuSum for quickest change detection under transient dynamics
D-CuSum 的渐近最优性用于瞬态动态下最快的变化检测
Statistical Foundations for Computerized Adaptive Testing with Response Revision
  • DOI:
    10.1007/s11336-019-09662-9
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Shiyu Wang;Georgios Fellouris;Hua-Hua Chang
  • 通讯作者:
    Hua-Hua Chang
Asymptotically optimal, sequential, multiple testing procedures with prior information on the number of signals
渐进最优、顺序、多重测试程序,具有信号数量的先验信息
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yanglei Song;Georgios Fellouris
  • 通讯作者:
    Georgios Fellouris
Decentralized sequential change detection with ordered CUSUMs
使用有序 CUSUM 进行分散式顺序变化检测
Round Robin Active Sequential Change Detection for Dependent Multi-Channel Data
针对相关多通道数据的循环主动顺序变化检测
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Chaudhuri;Georgios Fellouris;A. Tajer
  • 通讯作者:
    A. Tajer

Georgios Fellouris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Fellouris', 18)}}的其他基金

AMPS: Collaborative Research: Efficient Algorithms for Ultra-Fast Detection of Power System Contingencies in the Transient Regime
AMPS:协作研究:瞬态状态下电力系统突发事件超快速检测的高效算法
  • 批准号:
    1736454
  • 财政年份:
    2018
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Continuing Grant
Modeling and Detection of Learning in Cognitive Diagnosis
认知诊断中学习的建模和检测
  • 批准号:
    1632023
  • 财政年份:
    2016
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 13.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了