BIGDATA: Collaborative Research: IA: OSCAR - Open Source Supply Chains and Avoidance of Risk: An Evidence Based Approach to Improve FLOSS Supply Chains
BIGDATA:协作研究:IA:OSCAR - 开源供应链和风险规避:改进 FLOSS 供应链的基于证据的方法
基本信息
- 批准号:1633083
- 负责人:
- 金额:$ 42.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Open source software is an engine for innovation and a critical infrastructure for the nation and yet it is implemented by communities formed from a loose collection of individuals. With each software project relying on thousands of other software projects, this complex and dynamic supply chain introduces new risks and unpredictability, since, unlike in traditional software projects, no contractual relationships with the community exist and individuals could simply lose interest or move on to other activities.The big data-based approach to software supply chains will stimulate academic and practical work. The tools and practices to quantify and mitigate risks in the rapidly changing global environment with no centralized control or authority will lead to dramatic reductions in risk manifested in, for example, the spread of vulnerabilities thus making the nation both safer and more innovative. The theoretical frameworks and approaches developed will likely influence research and practice in other supply chain contexts.The objective of this research is to advance the state of knowledge of software supply chains by collecting and integrating massive public operational data representing development activity and source code from all open source projects and using it to develop novel theories, methods, and tools. The construction and analysis of the entire open source supply chain provides static and dynamic properties of the network, risk propagation, and system-level risks. Novel statistical and game-theoretic models are used to assess and mitigate these risks, while methods to contextualize, augment, and correct operational data provide ways to cope with data?s size, complexity, and observational nature.
开源软件是创新的引擎,是国家的关键基础设施,但它是由松散的个人集合组成的社区实现的。由于每个软件项目都依赖于成千上万的其他软件项目,这种复杂而动态的供应链引入了新的风险和不可预测性,因为与传统软件项目不同,与社区不存在合同关系,个人可能会失去兴趣或转移到其他活动。基于大数据的软件供应链方法将刺激学术和实际工作。在没有集中控制或权威的快速变化的全球环境中,量化和减轻风险的工具和实践将导致风险的大幅减少,例如,脆弱性的蔓延,从而使国家更安全,更创新。所开发的理论框架和方法可能会影响其他供应链背景下的研究和实践。本研究的目标是通过收集和集成代表开发活动和所有开源项目源代码的大量公共操作数据,并使用它来开发新的理论、方法和工具,来推进软件供应链的知识状态。整个开源供应链的构建和分析提供了网络、风险传播和系统级风险的静态和动态特性。新的统计和博弈论模型用于评估和减轻这些风险,而情境化、增强和纠正操作数据的方法提供了处理数据的方法。S的大小、复杂性和可观察性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Building a socio-technical theory of coordination: why and how (outstanding research award)
- DOI:10.1145/2950290.2994160
- 发表时间:2016-11
- 期刊:
- 影响因子:0
- 作者:J. Herbsleb
- 通讯作者:J. Herbsleb
Ecosystem-level determinants of sustained activity in open-source projects: a case study of the PyPI ecosystem
- DOI:10.1145/3236024.3236062
- 发表时间:2018-10
- 期刊:
- 影响因子:0
- 作者:Marat Valiev;Bogdan Vasilescu;J. Herbsleb
- 通讯作者:Marat Valiev;Bogdan Vasilescu;J. Herbsleb
THE IMPACT OF IDEOLOGY MISFIT ON OPEN SOURCE SOFTWARE COMMUNITIES AND COMPANIES
- DOI:10.25300/misq/2018/14242
- 发表时间:2018-12-01
- 期刊:
- 影响因子:7.3
- 作者:Daniel, Sherae L.;Maruping, Likoebe M.;Herbsleb, Jim
- 通讯作者:Herbsleb, Jim
Identifying unusual commits on GitHub: Goyal
识别 GitHub 上的异常提交:Goyal
- DOI:10.1002/smr.1893
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Goyal, Raman;Ferreira, Gabriel;Kästner, Christian;Herbsleb, James
- 通讯作者:Herbsleb, James
"This is damn slick!": estimating the impact of tweets on open source project popularity and new contributors
“这太狡猾了!”:估计推文对开源项目受欢迎程度和新贡献者的影响
- DOI:10.1145/3510003.3510121
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fang, Hongbo;Lamba, Hemank;Herbsleb, James;Vasilescu, Bogdan
- 通讯作者:Vasilescu, Bogdan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Herbsleb其他文献
Modelling the Likelihood of Software Process Improvement: An Exploratory Study
- DOI:
10.1023/a:1011487332587 - 发表时间:
2001-01-01 - 期刊:
- 影响因子:3.600
- 作者:
Khaled El-Emam;Dennis Goldenson;James McCurley;James Herbsleb - 通讯作者:
James Herbsleb
James Herbsleb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Herbsleb', 18)}}的其他基金
Collaborative Research: CCRI: New: World Of Code (WoC): The development of curated code resource to support research in software engineering
合作研究:CCRI:新:代码世界 (WoC):开发精选代码资源以支持软件工程研究
- 批准号:
2120323 - 财政年份:2021
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: SDI-CPR: Sustaining Digital Infrastructure as a Common Pool Resource
CHS:中:协作研究:SDI-CPR:将数字基础设施维持为公共池资源
- 批准号:
1901311 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Continuing Grant
CCRI: Collaborative Research: Planning for World Of Code (WoC): An Infrastructure for Open Source Software Census
CCRI:协作研究:规划代码世界(WoC):开源软件普查的基础设施
- 批准号:
1925520 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
HCC: Medium: Personalized information access for online deliberation systems
HCC:中:在线审议系统的个性化信息访问
- 批准号:
1302522 - 财政年份:2013
- 资助金额:
$ 42.94万 - 项目类别:
Continuing Grant
HCC: Large: Collaborative Research: Large-Scale Human-Centered Coordination Systems to Support Interdependent Tasks in Context
HCC:大型:协作研究:大规模以人为中心的协调系统,支持上下文中相互依赖的任务
- 批准号:
1111750 - 财政年份:2011
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
Planning Grant: I/UCRC for Architecting Socio-Technical Ecosystems
规划补助金:I/UCRC 用于构建社会技术生态系统
- 批准号:
1068038 - 财政年份:2011
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
Socio-technical ecosystems for scientific software development
科学软件开发的社会技术生态系统
- 批准号:
0943168 - 财政年份:2009
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
The Role of Architecture in Facilitating Design Collaboration
架构在促进设计协作中的作用
- 批准号:
0534656 - 财政年份:2005
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
Coordination, communication, and collaboration in open source software development
开源软件开发中的协调、沟通和协作
- 批准号:
0414698 - 财政年份:2005
- 资助金额:
$ 42.94万 - 项目类别:
Continuing Grant
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
2308649 - 财政年份:2022
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Holistic Optimization of Data-Driven Applications
BIGDATA:协作研究:F:数据驱动应用程序的整体优化
- 批准号:
2027516 - 财政年份:2020
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Practical Analysis of Large-Scale Data with Lyme Disease Case Study
BIGDATA:F:协作研究:莱姆病案例研究大规模数据的实际分析
- 批准号:
1934319 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Protecting Yourself from Wildfire Smoke: Big Data-Driven Adaptive Air Quality Prediction Methodologies
大数据:IA:协作研究:保护自己免受野火烟雾的侵害:大数据驱动的自适应空气质量预测方法
- 批准号:
1838022 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1926250 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Intelligent Solutions for Navigating Big Data from the Arctic and Antarctic
BIGDATA:IA:协作研究:导航北极和南极大数据的智能解决方案
- 批准号:
1947584 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
1837964 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838222 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Optimizing Log-Structured-Merge-Based Big Data Management Systems
BIGDATA:F:协作研究:优化基于日志结构合并的大数据管理系统
- 批准号:
1838248 - 财政年份:2019
- 资助金额:
$ 42.94万 - 项目类别:
Standard Grant