Evaluating the Accuracy of Biogeochemical Cycling Rates from Transient Tracers
评估瞬态示踪剂生物地球化学循环速率的准确性
基本信息
- 批准号:1634256
- 负责人:
- 金额:$ 41.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to predict future oceanic uptake of carbon dioxide and, consequently, the response of the coupled ocean/land/atmosphere system to climate forcing, requires an understanding of both how the physical, chemical, and biological systems presently function and how they are likely to respond to predicted environmental changes. Oxygen consumption/utilization (OUR) and nutrient regeneration (NRR) rates in the ocean interior provide an attractive bottom-up approach to infer marine productivity in the sunlit surface waters. Oxygen utilization rates are often estimated using the distributions of "transient tracers,' compounds such as chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF6) that are introduced in to the atmosphere and oceans by human activity. Tracer-based estimates are subject to uncertainties based on several factors including the time history of the tracers and ocean mixing. Investigators at the University of Washington plan to use ocean models to examine the sources of these uncertainties and determine where in the oceans the tracer-based estimates agree best (and worst) with the actual rates. The investigation of biogeochemical cycling rates and surface ocean productivity based on tracer techniques will be put into context with those from other measurement systems such as satellite or Argo floats and will provide an improved view of biogeochemical cycling in the ocean. Recommendations on where the technique works will be important for the interpretation of results from future hydrographic cruises and can guide strategies for future tracer measurements. The investigators will include undergraduate summer students in the research, and participate in outreach programs in local schools.The investigators will address the biases and uncertainties in the tracer-based OURs and NRRs using a multi-model approach. Analysis of existing tracer model output, including oxygen, phosphate, CFCs, SF6, ideal ages and transit time distributions (TTDs), will reveal in which regions and during which times transient tracer ages (combined with oxygen fields) give the best estimation of the known oxygen consumption terms in the model. They will expand this work using the National Center for Atmospheric Research's Parallel Ocean Program model output (ocean-only configuration) which contains a much larger variety of biogeochemical parameters and more complex biogeochemistry (though no SF6, TTDs or ideal age spun up to steady state). In addition to OURs, this allows investigation of the accuracy of tracer-inferred NRRs, including denitrification rates, silicate production rates, and calcium carbonate dissolution, as well as regeneration rates of dissolved organic nutrients. Finally, a planned, near-future addition of multi-biogeochemical tracer algorithms to the current offline will enable the investigators to look at complex biogeochemistry and the full spectrum of transient tracer, ideal, and TTD ages simultaneously. Finally they will address the robustness of apparent changes in OURs/NRRs observed during recent and upcoming Climate Variability and Prediction/Global Ocean Ship-based Hydrographic Investigations Program (CLIVAR/GO-SHIP) Repeat Hydrography (RH) sections.
预测未来海洋吸收二氧化碳的能力,以及因此耦合的海洋/陆地/大气系统对气候强迫的响应,需要了解物理,化学和生物系统目前如何运作,以及它们可能如何响应预测的环境变化。海洋内部的氧消耗/利用率(OUR)和营养再生率(NRR)提供了一个有吸引力的自下而上的方法来推断阳光照射的表面沃茨的海洋生产力。氧气利用率通常使用“瞬态示踪剂”的分布来估计,这些化合物如氯氟烃(CFC)和六氟化硫(SF6),是由人类活动引入大气和海洋的。基于示踪剂的估计受到若干因素的不确定性的影响,包括示踪剂的时间历史和海洋混合。华盛顿大学的研究人员计划使用海洋模型来检查这些不确定性的来源,并确定海洋中基于示踪剂的估计与实际速率最吻合(和最差)的地方。利用示踪技术对海洋地球化学循环速率和表层海洋生产力进行的调查将与卫星或阿尔戈浮标等其他测量系统的调查相结合,并将提供更好的海洋地球化学循环情况。关于该技术在何处起作用的建议对于解释未来水文航行的结果很重要,并可指导未来示踪剂测量的战略。研究人员将包括本科暑期学生的研究,并参加在当地学校的推广计划。研究人员将解决的偏见和不确定性,在基于示踪剂的OUR和NRR使用多模型的方法。现有示踪剂模型输出的分析,包括氧气,磷酸盐,CFCs,SF6,理想年龄和渡越时间分布(TTD),将揭示在哪些区域和在此期间瞬态示踪剂年龄(结合氧气场)给出最佳估计的已知氧气消耗量的模型。他们将使用国家大气研究中心的并行海洋计划模型输出(仅海洋配置)来扩展这项工作,该模型输出包含更多种类的地球化学参数和更复杂的地球化学(尽管没有SF6,TTD或理想年龄旋转到稳定状态)。除了OURs,这允许调查示踪剂推断的NRR的准确性,包括反硝化速率,硅酸盐生产率,碳酸钙溶解,以及溶解的有机营养素的再生率。最后,一个有计划的,不久的将来增加多地球化学示踪剂算法,目前离线将使研究人员能够同时查看复杂的地球化学和全谱的瞬态示踪剂,理想的,和TTD年龄。最后,他们将讨论在最近和即将到来的气候变率和预测/全球海洋船舶水文调查计划(CLIVAR/GO-SHIP)重复水文(RH)部分中观察到的OURs/NRR明显变化的鲁棒性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sabine Mecking其他文献
Sabine Mecking的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sabine Mecking', 18)}}的其他基金
Linking ventilation changes in the thermocline with surface outcrop variations
将温跃层的通风变化与地表露头变化联系起来
- 批准号:
1851149 - 财政年份:2019
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Collaborative Research: Tracer Age-Based Estimates of Carbon Export and Ventilation Variability in the Indian Ocean
合作研究:基于示踪剂年龄的印度洋碳输出和通风变化估计
- 批准号:
1059886 - 财政年份:2011
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Collaborative Research:Transport and Divergence of CO2, O2 and Nutrients in the Atlantic Ocean, Continuation of WOCE-era Inversion with Comparison to Tracer Age Based Approaches
合作研究:大西洋中二氧化碳、氧气和营养物的传输和扩散,WOCE时代反演的延续与基于示踪剂年龄的方法的比较
- 批准号:
0623548 - 财政年份:2006
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
- 批准号:
BB/X018563/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
- 批准号:
BB/X018660/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
- 批准号:
2335170 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
- 批准号:
10099483 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Collaborative R&D














{{item.name}}会员




