Learning Algorithms for Dynamic Inventory and Pricing Optimization Problems

动态库存和定价优化问题的学习算法

基本信息

项目摘要

Learning algorithms aim to solve dynamic optimization problems in which the decision maker has limited or no prior information about either a part of or the entire system structure. Indeed, in many applications, the system is so complex that it may not be possible to lay out an exact theoretical model with all system parameters known in advance. In these settings, the decision maker needs to learn such information during the decision making process, e.g., by extracting information from the collected data, to design algorithms for improved system performance. This view of optimization as a dynamic learning process has become prominent in recent years and has led to some promising results. This research will develop efficient data-driven learning algorithms for dynamic operations optimization problems in supply chain management. It will be accomplished by incorporating and extending ideas and techniques from machine learning and stochastic optimization, and the effectiveness of the algorithms will be measured by regret, defined as its average loss (increment) in profit (cost) per unit time compared with a clairvoyant who has complete information about the underlying system structure. This project involves several disciplines such as manufacturing, computing, operations research, and business analytics, and the multidisciplinary approach will encourage participation from under-represented groups and positively impact graduate and undergraduate education. Efficient data-driven algorithms will be developed for several classes of dynamic operations optimization problems, including multi-product dynamic inventory control with stockout substitutions, multi-product pricing and inventory control under customer choice models, inventory and pricing optimization under changing and seasonal environments, dynamic optimization in competitive environments, dynamic inventory control and pricing with reference point effect, and dynamic joint operations and marketing decision making. The research integrates cutting-edge knowledge and ideas from various areas, such as statistics, game theory, machine learning, operations research, and behavioral sciences, and it will lead to efficient learning algorithms that perform well both theoretically and empirically. With the increasing availability of data in companies, the research from this project will help them better utilize data for intelligent pricing and inventory decisions, and increase revenue and minimize cost.
学习算法旨在解决动态优化问题,其中决策者对系统结构的一部分或整个系统结构的先验信息有限或没有先验信息。事实上,在许多应用中,系统是如此复杂,以至于可能无法在所有系统参数都预先已知的情况下制定精确的理论模型。在这些情况下,决策者需要在决策过程中了解这些信息,例如,通过从收集的数据中提取信息,设计算法以提高系统性能。这种将优化视为动态学习过程的观点近年来变得突出,并取得了一些有希望的结果。本研究将开发有效的数据驱动学习算法,用于供应链管理中的动态操作优化问题。它将通过整合和扩展机器学习和随机优化的思想和技术来实现,算法的有效性将通过后悔来衡量,后悔定义为与拥有完整信息的千里眼相比,单位时间内利润(成本)的平均损失(增量)。该项目涉及制造,计算,运筹学和商业分析等多个学科,多学科方法将鼓励代表性不足的群体参与,并对研究生和本科生教育产生积极影响。将为几类动态运营优化问题开发有效的数据驱动算法,包括缺货替代的多产品动态库存控制,客户选择模型下的多产品定价和库存控制,变化和季节环境下的库存和定价优化,竞争环境下的动态优化,参考点效应下的动态库存控制和定价,动态联合经营和营销决策。该研究整合了来自各个领域的前沿知识和想法,如统计学,博弈论,机器学习,运筹学和行为科学,它将导致有效的学习算法,在理论和经验上都表现良好。随着公司数据可用性的增加,该项目的研究将帮助他们更好地利用数据进行智能定价和库存决策,并增加收入和最大限度地降低成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiuli Chao其他文献

Optimal control for a tandem network of queues with blocking
Stein-Chen approximation and error bound for the order-based rate of a multi-component multi-product ATO system
多组件多产品 ATO 系统基于订单的速率的 Stein-Chen 近似和误差界
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    周文慧;Xiuli Chao
  • 通讯作者:
    Xiuli Chao
Analysis and Computational Algorithm for Queues with State-Dependent Vacations II: M(n)/G/1/K
Optimal control policy for a Brownian inventory system with concave ordering cost
凹订购成本布朗库存系统的最优控制策略
  • DOI:
    10.1239/jap/1450802743
  • 发表时间:
    2015-12
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Dacheng Yao;Xiuli Chao;Jingchen Wu
  • 通讯作者:
    Jingchen Wu
Adaptive Lagrangian Policies for a Multiwarehouse, Multistore Inventory System with Lost Sales
针对销售损失的多仓库、多商店库存系统的自适应拉格朗日策略
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Xiuli Chao;Stefanus Jasin;Sentao Miao
  • 通讯作者:
    Sentao Miao

Xiuli Chao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiuli Chao', 18)}}的其他基金

Managing Perishable Inventory Systems: New Algorithms and Approximations
管理易腐烂库存系统:新算法和近似值
  • 批准号:
    1362619
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Cost-Effective Energy Efficiency Management of Sustainable Manufacturing Systems
GOALI/合作研究:可持续制造系统的经济有效的能源效率管理
  • 批准号:
    1131249
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research on Studies of Multichannel Opaque Service Enterprise
多渠道不透明服务企业研究协同研究
  • 批准号:
    0927631
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research on Risk Management in Supply Chains Using Market Information
利用市场信息的供应链风险管理协作研究
  • 批准号:
    0800004
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Resource and Demand Allocation in Dynamic Environments
合作研究:动态环境中的资源和需求分配
  • 批准号:
    0200306
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Studies of Stochastic Production Systems
随机生产系统的研究
  • 批准号:
    9908294
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing grant
Studies of Stochastic Production Systems
随机生产系统的研究
  • 批准号:
    0196084
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Resource Allocation in Queueing and Inventory Systems
研究启动奖:排队和库存系统中的资源分配
  • 批准号:
    9209526
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing grant

相似海外基金

CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
AF: Small: Communication-Aware Algorithms for Dynamic Allocation of Heterogeneous Resources
AF:小型:用于异构资源动态分配的通信感知算法
  • 批准号:
    2335187
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Theory for Dynamic Graph Algorithms
职业:动态图算法理论
  • 批准号:
    2238138
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: DyG-MAP: Fast Algorithms for Mining and Analysis of Evolving Patterns in Large Dynamic Graphs
RII Track-4:NSF:DyG-MAP:大型动态图中演化模式挖掘和分析的快速算法
  • 批准号:
    2323533
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ATD: Algorithms for Real-time Dynamic Risk Identification with Statistical Confidence
ATD:具有统计置信度的实时动态风险识别算法
  • 批准号:
    2220537
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Dynamic Games: Theory, Algorithms and Applications
动态博弈:理论、算法和应用
  • 批准号:
    RGPIN-2021-02462
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Designing algorithms for dynamic data
设计动态数据算法
  • 批准号:
    2744016
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
  • 批准号:
    10559690
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了