A Diagnostic Modeling Methodology for Dual Retrospective Cost Adaptive Control of Combustion

双回溯成本自适应燃烧控制的诊断建模方法

基本信息

项目摘要

Control technology makes it possible to use robotics for manufacturing and autopilots for autonomous vehicles. Control technology enhances productivity, efficiency, and safety. Applications that are especially challenging require computer algorithms that can adapt to unpredictable changes in the system and its environment. This project will use adaptive control to improve the performance of engines that burn fuel in combustion processes. These engines are used worldwide to generate energy for the electrical grid. The challenging problem is to burn the fuel more efficiently and reduce pollution despite changes in the demand for electricity. The technology developed under this project will enhance the operation and reliability of the electrical grid while reducing the emission of greenhouse gases and soot particles. The project will involve students from multiple engineering disciplines and will enhance the diversity of future professionals working in this area of technology. This project will advance knowledge and understanding in the theory and practice of feedback control by developing diagnostic modeling techniques for retrospective cost adaptive control (RCAC). The modeling information required by RCAC concerns the presence of specific features (such as right-half-plane zeros and nonlinearities) as well as the accuracy with which those features must be known (locations of the right-half-plane zeros and details of the nonlinearities). As an extension of RCAC, adaptation and closed-loop identification are performed concurrently as dual RCAC (DRCAC). This technique depends on efficient algorithms for biquadratic optimization. If identification with DRCAC using feedback sensors fails to reveal the essential modeling details, then non-feedback sensors with more in-depth diagnostic capability will be used to probe the system to obtain data for calibrating reduced-fidelity models. These models will be used by DRCAC for online analysis and closed-loop simulation, and, if necessary, the feedback sensing and actuation strategy will be modified. The intellectual objective of this project is a deeper understanding of dual control and the development of the diagnostic methodology in order to facilitate adaptive control of complex systems in theory and practice.
控制技术使机器人技术用于制造和自动驾驶汽车成为可能。控制技术提高了生产力、效率和安全性。特别具有挑战性的应用程序需要能够适应系统及其环境中不可预测变化的计算机算法。该项目将使用自适应控制来提高在燃烧过程中燃烧燃料的发动机的性能。 这些发动机在世界范围内用于为电网发电。 具有挑战性的问题是,尽管电力需求发生了变化,但如何更有效地燃烧燃料并减少污染。 该项目开发的技术将提高电网的运行和可靠性,同时减少温室气体和烟尘颗粒的排放。 该项目将涉及来自多个工程学科的学生,并将提高未来在这一技术领域工作的专业人员的多样性。本项目将通过开发追溯成本自适应控制(RCAC)的诊断建模技术,提高对反馈控制理论和实践的认识和理解。RCAC所需的建模信息涉及特定特征(如右半平面零点和非线性)的存在以及必须知道这些特征的准确性(右半平面零点的位置和非线性的细节)。 作为RCAC的扩展,自适应和闭环识别作为双RCAC(DRCAC)同时执行。这种技术依赖于双二次优化的有效算法。如果使用反馈传感器的DRCAC识别无法揭示基本的建模细节,则将使用具有更深入诊断能力的非反馈传感器来探测系统,以获得用于校准降保真模型的数据。DRCAC将使用这些模型进行在线分析和闭环仿真,必要时还将修改反馈传感和驱动策略。该项目的智力目标是更深入地理解双重控制和诊断方法的发展,以促进复杂系统的自适应控制的理论和实践。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Time-Delayed Lur’e Model with Biased Self-Excited Oscillations
具有偏置自激振荡的时滞 Lurâe 模型
  • DOI:
    10.23919/acc45564.2020.9147761
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paredes, Juan;Ul Islam, Syed Aseem;Bernstein, Dennis S.
  • 通讯作者:
    Bernstein, Dennis S.
Identification of Self-Excited Systems Using Discrete-Time, Time-Delayed Lur'e Models
使用离散时间、时滞 Lure 模型识别自激系统
Output-only identification of self-excited systems using discrete-time Lur'e models with application to a gas-turbine combustor
使用离散时间 Lure 模型仅输出识别自励系统并应用于燃气轮机燃烧室
  • DOI:
    10.1080/00207179.2022.2137702
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Paredes, Juan A.;Yang, Yulong;Bernstein, Dennis S.
  • 通讯作者:
    Bernstein, Dennis S.
Large-eddy simulation and challenges for projection-based reduced-order modeling of a gas turbine model combustor
Design and Characterization of the Dual Independent Swirl Combustor Facility (DISCo)
双独立旋流燃烧室设施 (DISCo) 的设计和表征
  • DOI:
    10.2514/6.2021-3479
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ramesh, Rahul;Obidov, Sanjar;Paredes, Juan;S. Bernstein, Dennis;Gamba, Mirko
  • 通讯作者:
    Gamba, Mirko
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dennis Bernstein其他文献

Dennis Bernstein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dennis Bernstein', 18)}}的其他基金

EAGER: Advancing Adaptive Vibrational Control
EAGER:推进自适应振动控制
  • 批准号:
    2310300
  • 财政年份:
    2024
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Sensor Fault Detection and Diagnosis for Enhanced Safety of Autonomous Systems
用于增强自主系统安全性的传感器故障检测和诊断
  • 批准号:
    2031333
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
New Techniques for Fault Detection and Diagnosis for Safety-Critical Applications
安全关键应用的故障检测和诊断新技术
  • 批准号:
    1536834
  • 财政年份:
    2015
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Retrospective Cost Adaptive Control of Nonlinear Systems Using Ersatz Nonlinear Models
使用 Ersatz 非线性模型的非线性系统的回顾性成本自适应控制
  • 批准号:
    1160916
  • 财政年份:
    2012
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Capacity-Constrained Scheduling and Data-Based Model Refinement for Enhanced Collision Avoidance in Low-Earth Orbit
CPS:中:协作研究:稳健的容量受限调度和基于数据的模型细化,以增强低地球轨道的防撞能力
  • 批准号:
    1035236
  • 财政年份:
    2010
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
A Multistability Framework for Modeling and Control of Hysteretic Damping and Friction
用于迟滞阻尼和摩擦建模和控制的多稳定性框架
  • 批准号:
    0758363
  • 财政年份:
    2008
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
DDDAS-SMRP:Targeted Data Assimilation for Disturbance-Driven Systems: Space Weather Forcasting in the Ionosphere and Thermosphere Using a Dynamically Steered Incoherent Scatter Ra
DDDAS-SMRP:干扰驱动系统的定向数据同化:使用动态引导非相干散射 Ra 进行电离层和热层空间天气预报
  • 批准号:
    0539053
  • 财政年份:
    2005
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Modeling, Identification, and Control of Systems with Rate-Dependent Hysteresis
具有速率相关迟滞的系统的建模、识别和控制
  • 批准号:
    0225799
  • 财政年份:
    2002
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
US-UK and US-Greece Cooperative Research: Modeling, Identification, and Control of Self-Oscillating Systems
美国-英国和美国-希腊合作研究:自振荡系统的建模、识别和控制
  • 批准号:
    9820049
  • 财政年份:
    1999
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Engineering Research Equipment: Instrumentation for an Experimental Control Systems Laboratory
工程研究设备:实验控制系统实验室仪器
  • 批准号:
    9729290
  • 财政年份:
    1998
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

A Graph-based Methodology for Modeling the Nucleation of Weak Electrolytes
基于图形的弱电解质成核建模方法
  • 批准号:
    2317787
  • 财政年份:
    2023
  • 资助金额:
    $ 125万
  • 项目类别:
    Continuing Grant
Graphical Modeling of High-Dimensional Functional Data: Separability Structures and Unified Methodology under General Observational Designs
高维函数数据的图形建模:一般观测设计下的可分离结构和统一方法
  • 批准号:
    2310943
  • 财政年份:
    2023
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
A methodology for quantitative failure risk analysis using physical modeling and Bayesian network
使用物理建模和贝叶斯网络进行定量故障风险分析的方法
  • 批准号:
    23K13522
  • 财政年份:
    2023
  • 资助金额:
    $ 125万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Advanced Feature Semantics Modeling Methodology and Technology Development in a Smart Product and Process Engineering Regime
智能产品和过程工程体系中的高级特征语义建模方法和技术开发
  • 批准号:
    RGPIN-2020-03956
  • 财政年份:
    2022
  • 资助金额:
    $ 125万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
  • 批准号:
    RGPIN-2019-05917
  • 财政年份:
    2022
  • 资助金额:
    $ 125万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Learning and Modeling: Methodology and Algorithm
统计学习和建模:方法和算法
  • 批准号:
    RGPIN-2019-05917
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology Development and Implementation for Microbiome Sequencing Data: Hierarchical Modeling on Clustered Taxa Counts with Repeated Measures
微生物组测序数据的方法开发和实施:重复测量的聚类分类群计数的分层建模
  • 批准号:
    RGPIN-2017-06672
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and Statistical Modeling and Methodology for Topics in Diffusion Tensor Imaging
扩散张量成像主题的数学和统计建模及方法
  • 批准号:
    2111251
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Standard Grant
Statistical modeling, inference and methodology in microbial metagenomics data analysis and computational molecular evolution
微生物宏基因组数据分析和计算分子进化的统计建模、推理和方法
  • 批准号:
    RGPIN-2017-05108
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Discovery Grants Program - Individual
Methodology for the Next Generation of Building Thermal Modeling and Simulation
下一代建筑热建模和仿真方法
  • 批准号:
    RGPIN-2016-04176
  • 财政年份:
    2021
  • 资助金额:
    $ 125万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了