Sensor Fault Detection and Diagnosis for Enhanced Safety of Autonomous Systems
用于增强自主系统安全性的传感器故障检测和诊断
基本信息
- 批准号:2031333
- 负责人:
- 金额:$ 37.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many modern systems such as autonomous vehicles and manufacturing systems operate under the control of a computer. All of these systems rely on sensors, which measure things like speed, temperature, and pressure. If one of these sensors fails, however, then the computer may take an incorrect action that can hurt people or damage property. Therefore, it is extremely important to ensure all of the sensors that provide measurements for the computer are working correctly. This project aims to enhance the safety of these systems by developing methods for checking on whether the measurements provided by the sensors are correct and can be used safely by the computer.Adaptive delayed left inversion (ADLI) constructs a causal, delayed left inverse of a dynamical system that represents the relationship between two sets of sensors, namely, input sensors, which are suspect, and output sensors, which are assumed to be healthy. Multiple combinations of sensors will be considered in order to determine whether the output sensors are indeed healthy. Measurements from the healthy sensors are used to drive the delayed left inverse, whose output provides estimates of the expected measurements from the suspect input sensors. By comparing these estimates with the actual measurements, it is possible to detect and diagnose sensor faults. ADLI will be applied to discretized nonlinear kinematic differential equations that relate signals from multiple sensors, thus, providing the means for sensor fault detection and diagnosis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多现代系统,如自动驾驶汽车和制造系统,都在计算机的控制下运行。所有这些系统都依赖传感器,传感器可以测量速度、温度和压力等信息。然而,如果这些传感器中的一个发生故障,那么计算机可能会采取错误的操作,可能会伤害他人或损坏财产。因此,确保为计算机提供测量的所有传感器都正常工作是极其重要的。该项目旨在通过开发检查传感器提供的测量是否正确以及计算机是否可以安全使用的方法来增强这些系统的安全性。自适应延迟左反(ADLI)构造了动态系统的因果延迟左逆,它表示两组传感器之间的关系,即输入传感器(可疑传感器)和输出传感器(假设为健康传感器)之间的关系。将考虑传感器的多种组合,以确定输出传感器是否确实健康。来自健康传感器的测量被用来驱动延迟的左逆,其输出提供来自可疑输入传感器的预期测量的估计。通过将这些估计值与实际测量值进行比较,可以检测和诊断传感器故障。ADLI将应用于离散化的非线性运动微分方程式,将来自多个传感器的信号联系起来,从而为传感器故障检测和诊断提供手段。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Counting Zeros Using Observability and Block Toeplitz Matrices
使用可观测性和分块托普利茨矩阵计算零
- DOI:10.1109/tac.2020.2989269
- 发表时间:2021
- 期刊:
- 影响因子:6.8
- 作者:Sanjeevini, Sneha;Bernstein, Dennis S.
- 通讯作者:Bernstein, Dennis S.
Decomposition of the Retrospective Performance Variable in Adaptive Input Estimation
- DOI:10.23919/acc53348.2022.9867833
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Sneha Sanjeevini;D. Bernstein
- 通讯作者:Sneha Sanjeevini;D. Bernstein
On the Accuracy of Numerical Differentiation Using High-Gain Observers and Adaptive Input Estimation
关于使用高增益观测器和自适应输入估计的数值微分的准确性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:S. Verma, S. Sanjeevini
- 通讯作者:S. Verma, S. Sanjeevini
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dennis Bernstein其他文献
Dennis Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dennis Bernstein', 18)}}的其他基金
EAGER: Advancing Adaptive Vibrational Control
EAGER:推进自适应振动控制
- 批准号:
2310300 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
A Diagnostic Modeling Methodology for Dual Retrospective Cost Adaptive Control of Combustion
双回溯成本自适应燃烧控制的诊断建模方法
- 批准号:
1634709 - 财政年份:2016
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
New Techniques for Fault Detection and Diagnosis for Safety-Critical Applications
安全关键应用的故障检测和诊断新技术
- 批准号:
1536834 - 财政年份:2015
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Retrospective Cost Adaptive Control of Nonlinear Systems Using Ersatz Nonlinear Models
使用 Ersatz 非线性模型的非线性系统的回顾性成本自适应控制
- 批准号:
1160916 - 财政年份:2012
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Capacity-Constrained Scheduling and Data-Based Model Refinement for Enhanced Collision Avoidance in Low-Earth Orbit
CPS:中:协作研究:稳健的容量受限调度和基于数据的模型细化,以增强低地球轨道的防撞能力
- 批准号:
1035236 - 财政年份:2010
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
A Multistability Framework for Modeling and Control of Hysteretic Damping and Friction
用于迟滞阻尼和摩擦建模和控制的多稳定性框架
- 批准号:
0758363 - 财政年份:2008
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
DDDAS-SMRP:Targeted Data Assimilation for Disturbance-Driven Systems: Space Weather Forcasting in the Ionosphere and Thermosphere Using a Dynamically Steered Incoherent Scatter Ra
DDDAS-SMRP:干扰驱动系统的定向数据同化:使用动态引导非相干散射 Ra 进行电离层和热层空间天气预报
- 批准号:
0539053 - 财政年份:2005
- 资助金额:
$ 37.67万 - 项目类别:
Continuing Grant
Modeling, Identification, and Control of Systems with Rate-Dependent Hysteresis
具有速率相关迟滞的系统的建模、识别和控制
- 批准号:
0225799 - 财政年份:2002
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
US-UK and US-Greece Cooperative Research: Modeling, Identification, and Control of Self-Oscillating Systems
美国-英国和美国-希腊合作研究:自振荡系统的建模、识别和控制
- 批准号:
9820049 - 财政年份:1999
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Engineering Research Equipment: Instrumentation for an Experimental Control Systems Laboratory
工程研究设备:实验控制系统实验室仪器
- 批准号:
9729290 - 财政年份:1998
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
相似海外基金
Analysis Solution to Improve Fault Detection on Mechanical Assembly Production Lines
改善机械装配生产线故障检测的分析解决方案
- 批准号:
10073325 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Collaborative R&D
Development of a Fault Detection Method Using Partial Shadows for Fire Prevention of Overloading Photovoltaic Power Generation Systems
超载光伏发电系统火灾预防中局部阴影故障检测方法的研制
- 批准号:
23K03806 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving STELLA Linac design by early fault detection and preventative maintenance for reducing Linac downtime using AI and ML
通过早期故障检测和预防性维护改进 STELLA Linac 设计,使用 AI 和 ML 减少 Linac 停机时间
- 批准号:
2878867 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Studentship
I-Corps: Non-Intrusive Cooling System Fault Detection Using Deep Learning of Acoustic Emissions
I-Corps:使用声发射深度学习进行非侵入式冷却系统故障检测
- 批准号:
2212002 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Discovery Grants Program - Individual
Fault Detection and Mitigation for Connected Autonomous Vehicles Using Output Measurements Only Market Assessment
仅使用输出测量的联网自动驾驶汽车的故障检测和缓解市场评估
- 批准号:
576537-2022 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Idea to Innovation
Hybrid Data-driven Physics-based Modeling for Machine Fault Detection, Diagnosis, and Prediction
用于机器故障检测、诊断和预测的混合数据驱动的基于物理的建模
- 批准号:
RGPIN-2019-03967 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Discovery Grants Program - Individual
Next generation fault detection, evaluation, and correction algorithms for HVAC control systems
适用于 HVAC 控制系统的下一代故障检测、评估和校正算法
- 批准号:
576809-2022 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Alliance Grants
Distributed maximum power point tracking and internal fault detection technologies for solar PV-powered roadways
太阳能光伏供电道路分布式最大功率点跟踪和内部故障检测技术
- 批准号:
558697-2020 - 财政年份:2022
- 资助金额:
$ 37.67万 - 项目类别:
Alliance Grants
Development of datasets, inverse models, and methods for adaptive fault detection and diagnostics in commercial buildings
开发商业建筑自适应故障检测和诊断的数据集、逆模型和方法
- 批准号:
RGPIN-2017-06317 - 财政年份:2021
- 资助金额:
$ 37.67万 - 项目类别:
Discovery Grants Program - Individual