Development of an ultra-fast method for continuous and automated analysis of dissolved greenhouse gases in surface waters
开发一种超快速方法,用于连续自动分析地表水中溶解的温室气体
基本信息
- 批准号:1634871
- 负责人:
- 金额:$ 22.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Natural waters such as oceans, lakes, and rivers comprise the largest global reservoirs of numerous greenhouse gases in active exchange with the atmosphere. The diffusive fluxes of these gases between the dissolved aqueous phase and the atmosphere comprise significant fluxes regionally and globally. Previous techniques used to determine surface water concentrations and air-water fluxes primarily focus on collecting discrete samples of surface water in vials or the use of shower-head equilibrators. While collecting discrete samples provides accurate results, the relatively coarse sampling of the natural environment can lead to uncertainties in the true extent of surface water greenhouse gas concentration features. Shower-head equilibrators provide near-continuous data for higher resolution mapping, but the slow response time for gases of low solubility such as methane can render their results inaccurate during rapidly changing dissolved gas concentrations. Interestingly, the over the last few years, several studies have produced data suggesting that the flux of certain dissolved greenhouse gases are emitted to the atmosphere aggressively in extremely localized areas. However, the technology has not been available to quantitatively discover and map the full extent of these features.This project will fully develop a new technique for the continuous analysis of dissolved greenhouse gas concentrations and natural isotopes in surface waters. The main advantage of this new system is an ultra-fast response time to changes in the surface water concentration of dissolved greenhouse gases while still maintaining high accuracy and precision analyses. More specifically, this technique will measure dissolved methane, carbon dioxide, carbon monoxide, and nitrous oxide concentrations and natural stable isotopes. The principle of operation is vacuum gas extraction. Water is continually pumped through a gas-permeable membrane at a rate of 15 liters per minute and a vacuum is applied to the outside of the membrane to extract the dissolved gases from the water stream. The extracted gases are then pumped into an analytical detector for analysis. By comparing the water and extracted gas flow rates with the concentration of a specific greenhouse gas measured in the extracted gases, the dissolved gas concentration can be determined. The main weakness of this system is that the gas extraction efficiency is not 100%. Thus, an integrated and automated calibration system has been developed to quantify the dissolved gas extraction efficiency at predetermined intervals. A prototype of this system has been developed and preliminary tests have been conducted in the laboratory and northern Gulf of Mexico displaying results that are accurate, precise, and able to detect concentration changes on sub-minute timescales. This project will develop this technology to completion with the goal of fully validating the system for a suite of different greenhouse gases, physical and chemical water properties, and extraction membrane types. Laboratory tests and field trials will be conducted with the goal of engineering and validating a system that is user-friendly, portable, and fully automated for use within the scientific community. A graduate student from a group underrepresented in science will be involved in this project as will six undergraduate students. All of these student scientists will be given opportunities to contribute to the entire scientific process from data collection and interpretation to presentation and publication.
自然沃茨,如海洋、湖泊和河流,是全球最大的温室气体储存库,与大气进行积极的交换。 这些气体在溶解的水相和大气之间的扩散通量包括区域和全球的显著通量。 以前用于确定地表水浓度和空气-水通量的技术主要集中在收集小瓶中的离散地表水样品或使用双头平衡器。 虽然收集离散样本可以提供准确的结果,但对自然环境的相对粗糙的采样可能导致地表水温室气体浓度特征的真实程度的不确定性。 喷淋头平衡器为更高分辨率的绘图提供了近乎连续的数据,但低溶解度气体(如甲烷)的缓慢响应时间可能会使其结果在快速变化的溶解气体浓度期间不准确。 有趣的是,在过去的几年里,一些研究产生的数据表明,某些溶解的温室气体的通量在极端局部地区被积极地排放到大气中。 然而,目前还没有技术来定量地发现和绘制这些特征的全部范围,本项目将充分开发一种新技术,用于连续分析表层沃茨中溶解的温室气体浓度和自然同位素。 这一新系统的主要优势是对地表水溶解温室气体浓度变化的超快响应时间,同时仍保持高精度和精确度分析。 更具体地说,这项技术将测量溶解的甲烷,二氧化碳,一氧化碳和一氧化二氮的浓度和天然稳定同位素。 工作原理是真空抽气。 水以每分钟15升的速率连续泵送通过透气膜,并在膜的外部施加真空以从水流中提取溶解的气体。 然后将提取的气体泵入分析检测器进行分析。 通过将水和提取气体的流速与在提取气体中测量的特定温室气体的浓度进行比较,可以确定溶解气体浓度。 该系统的主要缺点是瓦斯抽采效率不是100%。 因此,已经开发了一种集成的自动校准系统,以在预定的间隔量化溶解气体提取效率。 该系统的原型已经开发,并已在实验室和墨西哥湾北方进行了初步测试,显示结果是准确的,精确的,并能够检测浓度变化的亚分钟的时间尺度。 该项目将开发这项技术,以完成一套不同的温室气体,水的物理和化学性质以及提取膜类型的系统的全面验证。 将进行实验室测试和现场试验,目的是设计和验证一个用户友好、便携和完全自动化的系统,供科学界使用。 一名来自科学界代表性不足的研究生和六名本科生将参与这个项目。 所有这些学生科学家将有机会为整个科学过程做出贡献,从数据收集和解释到演示和出版。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Methane Sources in the Waters of Lake Michigan and Lake Superior as Revealed by Natural Radiocarbon Measurements
天然放射性碳测量揭示密歇根湖和苏必利尔湖水域中的甲烷来源
- DOI:10.1029/2019gl082531
- 发表时间:2019
- 期刊:
- 影响因子:5.2
- 作者:Joung, DongJoo;Leonte, Mihai;Kessler, John D.
- 通讯作者:Kessler, John D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Kessler其他文献
Atlantic bubble bath
大西洋泡泡浴
- DOI:
10.1038/ngeo2238 - 发表时间:
2014-08-24 - 期刊:
- 影响因子:16.100
- 作者:
John Kessler - 通讯作者:
John Kessler
John Kessler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Kessler', 18)}}的其他基金
Investigating the physical and chemical controls on aerobic methane oxidation
研究好氧甲烷氧化的物理和化学控制
- 批准号:
2241873 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Development of an Automated and User-Friendly Technique for Measuring Dissolved Methane and Nitrous Oxide Concentrations
开发用于测量溶解甲烷和一氧化二氮浓度的自动化且用户友好的技术
- 批准号:
2023514 - 财政年份:2020
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Constraining Global Coastal Ocean Methane Emissions to the Atmosphere
限制全球沿海海洋甲烷向大气的排放
- 批准号:
1851402 - 财政年份:2019
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Determining the Source of Methane in Arctic Ocean Waters Adjacent to Subsea Permafrost
确定邻近海底永久冻土层的北冰洋水域中甲烷的来源
- 批准号:
1417149 - 财政年份:2014
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Diode Laser Cavity-Ringdown Spectrometer for Shipboard Measurements of the Stable Isotopes on Oceanic Methane
合作研究:开发用于船上测量海洋甲烷稳定同位素的二极管激光腔衰荡光谱仪
- 批准号:
1300040 - 财政年份:2012
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Investigating the chemical and isotopic kinetics of aerobic methane oxidation
研究有氧甲烷氧化的化学和同位素动力学
- 批准号:
1318102 - 财政年份:2012
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Investigating the chemical and isotopic kinetics of aerobic methane oxidation
研究有氧甲烷氧化的化学和同位素动力学
- 批准号:
1154040 - 财政年份:2012
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
RAPID: The effect of methane laden oil on climate and dissolved oxygen: using the Deepwater Horizon oil spill as an analog for clathrate decomposition and seeping methane
RAPID:富含甲烷的石油对气候和溶解氧的影响:使用深水地平线漏油作为笼形分解和渗漏甲烷的类比
- 批准号:
1042650 - 财政年份:2010
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Collaborative Research: Development of a Diode Laser Cavity-Ringdown Spectrometer for Shipboard Measurements of the Stable Isotopes on Oceanic Methane
合作研究:开发用于船上测量海洋甲烷稳定同位素的二极管激光腔衰荡光谱仪
- 批准号:
0849246 - 财政年份:2008
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
US-UK Cooperative Science: Stochastic and Deterministic Components of Micro-organism Trajectories
美英合作科学:微生物轨迹的随机和确定性成分
- 批准号:
8922466 - 财政年份:1990
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
相似国自然基金
高性能纤维混凝土构件抗爆的强度预测
- 批准号:51708391
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
- 批准号:31471690
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
- 批准号:60976066
- 批准年份:2009
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
Development of spin-echo SANS method for fast measurement of ultra-small-angle neutron scattering information
超小角中子散射信息快速测量自旋回波SANS方法的发展
- 批准号:
23K11708 - 财政年份:2023
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Ultra-fast development of biocatalysts for textile recycling
用于纺织品回收的生物催化剂的超快速发展
- 批准号:
10042835 - 财政年份:2022
- 资助金额:
$ 22.74万 - 项目类别:
Grant for R&D
Development of Ultra-fast Assays for RNA-based Disease Targets
基于 RNA 的疾病靶点超快速检测方法的开发
- 批准号:
2748175 - 财政年份:2022
- 资助金额:
$ 22.74万 - 项目类别:
Studentship
Development of high power photoactive Erbium and Erbium-Ytterbium doped fibers for ultra-fast satellite telecommunications
开发用于超快卫星通信的高功率光敏掺铒和铒掺镱光纤
- 批准号:
561014-2020 - 财政年份:2022
- 资助金额:
$ 22.74万 - 项目类别:
Alliance Grants
Development of simultaneous ultra-fast 3D super resolution imaging and 3D single molecule tracking microscope system
同步超快速3D超分辨率成像和3D单分子跟踪显微镜系统的开发
- 批准号:
21K15058 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: MFB: Ultra-Fast Development of Portable Small Molecule Sensor-Actuators
合作研究:MFB:便携式小分子传感器执行器的超快速开发
- 批准号:
2128016 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Development of Ultra-Fast, Ultra-inexpensive Innovative Manufacturing of Organ Models for Surgical Simulation
开发超快速、超廉价的外科模拟器官模型创新制造
- 批准号:
21K12103 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: MFB: Ultra-Fast Development of Portable Small Molecule Sensor-Actuators
合作研究:MFB:便携式小分子传感器执行器的超快速开发
- 批准号:
2128246 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Standard Grant
Development of high power photoactive Erbium and Erbium-Ytterbium doped fibers for ultra-fast satellite telecommunications
开发用于超快卫星通信的高功率光敏掺铒和铒掺镱光纤
- 批准号:
561014-2020 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Alliance Grants
Collaborative Research: MFB: Ultra-Fast Development of Portable Small Molecule Sensor-Actuators
合作研究:MFB:便携式小分子传感器执行器的超快速开发
- 批准号:
2128287 - 财政年份:2021
- 资助金额:
$ 22.74万 - 项目类别:
Continuing Grant