EAGER: Safer Connected Communities Through Integrated Data-driven Modeling, Learning, and Optimization
EAGER:通过集成的数据驱动建模、学习和优化打造更安全的互联社区
基本信息
- 批准号:1637372
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Crime is a major problem in many urban communities. This project focuses on developing a framework for increased security and crime prevention in crime-prone environments by identifying and integrating hitherto disaggregated heterogeneous data and analyzing the causal and spatio-temporal interconnections between constituent parts of a connected community including environmental aspects (i.e., traffic, lighting, poverty levels, business proximity such as banks/ATMs), crime history, and social events. While existing crime prediction and prevention methods focus on the location of the crimes to detect ``hot-zones'', this project takes a fundamentally different, data-driven approach towards integrated multi-scale data analytics for identifying the characteristics and features of crime-prone environments. This high-risk high-payoff project research is based on real-time crime data and interactions with crime prevention and safety agencies. By revealing the connections between crime and environmental, social, and economic factors, this research aims to demonstrate the critical need of an integrated systems approach to crime prevention, instead of focusing on post-crisis management. This interdisciplinary endeavor of developing computational methods for crime prevention across public urban landscapes requires the combination of data mining and statistical methods in space and time to extract useful features and discover models from passive data sets. The proposed project will develop 1) new tools for the fundamental understanding of criminal behavior by analyzing the time varying and location-specific systems and patterns observed as a result of complex processes between interacting cyber-physical entities, and 2) scalable data-driven Nowcasting algorithms for crime prediction that will adapt with the constantly evolving state of criminal activity by continuously learning from a rich set of spatial and demographic features, including traffic, spatial attributes, socio-economic characteristics of neighborhoods, and current time, as well as context. To enable continuous forecasting over streaming data, while maintaining high prediction accuracy and low time complexity, the project will develop and train crime prediction artificial neural networks (CANN) for prediction across space and time. The output of the proposed data-driven models will feed a novel multi-objective optimization formulation that will be used for the integrated optimization of personnel positioning, patrol scheduling and safest route calculation. The resulting decision support environment, will be transferred to the USC Department of Public Safety (DPS), the Los Angeles Police Department (LAPD), and South Park Business Improvement District (SPBID) for integration with their systems to enable decision makers to choose the best course of action at any given time. This project will lead to the development of technology for crime prevention that will be directly applicable to smart and connected communities across the US, with the potential to bring together white and blue-collar residents from mixed urban communities- college campus residents, off-campus neighborhood residents and businesses with their employees, transiting commuters and law enforcement under the theme of making the communities quantifiably more secure. The project will leverage the USC Living Laboratory, a unique ?city within a city? campus and its adjacent neighborhoods as a real-world use case of a connected community of interrelated infrastructures.
犯罪是许多城市社区的一个主要问题。该项目的重点是制定一个框架,加强犯罪多发环境中的安全和预防犯罪,方法是查明和整合迄今分散的异质数据,并分析相互关联的社区各组成部分之间的因果和时空联系,包括环境方面(即交通、照明、贫困程度、银行/自动取款机等商业邻近地区)、犯罪历史和社会事件。虽然现有的犯罪预测和预防方法侧重于犯罪的地点,以发现“热点地区”,但该项目采取了一种完全不同的、以数据为导向的综合多尺度数据分析方法,以查明犯罪多发环境的特征和特征。这项高风险、高回报的项目研究是基于实时犯罪数据以及与预防犯罪和安全机构的互动。通过揭示犯罪与环境、社会和经济因素之间的联系,这项研究旨在证明预防犯罪的综合系统方法的迫切需要,而不是专注于危机后管理。这种跨学科的努力开发跨公共城市景观的犯罪预防计算方法,需要在空间和时间上结合数据挖掘和统计方法,从被动数据集中提取有用的特征并发现模型。拟议的项目将开发1)通过分析作为相互作用的网络物理实体之间复杂过程的结果而观察到的时变和特定位置的系统和模式来基本理解犯罪行为的新工具,以及2)用于犯罪预测的可扩展数据驱动的Nowcast算法,该算法将通过不断学习丰富的空间和人口特征,包括交通、空间属性、社区的社会经济特征、当前时间和背景,来适应犯罪活动的不断演变的状态。为了能够对流数据进行连续预测,同时保持高预测精度和低时间复杂性,该项目将开发和训练犯罪预测人工神经网络(CANN),用于跨空间和时间预测。提出的数据驱动模型的输出将提供一个新的多目标优化公式,用于人员定位、巡逻调度和最安全路线计算的综合优化。由此产生的决策支持环境将被转移到南加州大学公共安全部(DPS)、洛杉矶警察局(LAPD)和南方公园商业改善区(SPBID),以便与他们的系统集成,使决策者能够在任何给定时间选择最佳行动方案。该项目将推动犯罪预防技术的发展,该技术将直接适用于美国各地的智能互联社区,有可能将来自混合城市社区的白领和蓝领居民-大学校园居民、校外社区居民和企业及其员工、过境通勤者和执法人员-聚集在一起,主题是让社区变得更安全。该项目将利用南加州大学生活实验室,一个城市中的一个独特的城市?园区及其邻近社区作为相互关联的基础设施的互联社区的真实使用案例。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Network-based intervention strategies to reduce violence among homeless
- DOI:10.1007/s13278-019-0584-8
- 发表时间:2019-07-27
- 期刊:
- 影响因子:2.8
- 作者:Srivastava, Ajitesh;Petering, Robin;Prasanna, Viktor K.
- 通讯作者:Prasanna, Viktor K.
How to Stop Violence Among Homeless: Extension of Voter Model and Intervention Strategies
如何制止无家可归者中的暴力:选民模型的扩展和干预策略
- DOI:10.1109/asonam.2018.8508641
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Srivastava, Ajitesh;Petering, Robin;Kannan, Rajgopal;Rice, Eric;Prasanna, Viktor K.
- 通讯作者:Prasanna, Viktor K.
FActCheck: Keeping Activation of Fake News at Check
- DOI:
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:Ajitesh Srivastava;R. Kannan;C. Chelmis;V. Prasanna
- 通讯作者:Ajitesh Srivastava;R. Kannan;C. Chelmis;V. Prasanna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Viktor Prasanna其他文献
Accelerating Deep Neural Network guided MCTS using Adaptive Parallelism
使用自适应并行加速深度神经网络引导的 MCTS
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Qian Wang;Tianxin Zu;Viktor Prasanna - 通讯作者:
Viktor Prasanna
PEARL: Enabling Portable, Productive, and High-Performance Deep Reinforcement Learning using Heterogeneous Platforms
PEARL:使用异构平台实现便携式、高效且高性能的深度强化学习
- DOI:
10.1145/3649153.3649193 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuan Meng;Michael Kinsner;Deshanand Singh;Mahesh Iyer;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Accelerating GNN Training on CPU+Multi-FPGA Heterogeneous Platform
在 CPU 多 FPGA 异构平台上加速 GNN 训练
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yi-Chien Lin;Bingyi Zhang;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Guest Editorial: Computing Frontiers
- DOI:
10.1007/s10766-013-0240-2 - 发表时间:
2013-01-31 - 期刊:
- 影响因子:0.900
- 作者:
Calin Cascaval;Pedro Trancoso;Viktor Prasanna - 通讯作者:
Viktor Prasanna
Viktor Prasanna的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Viktor Prasanna', 18)}}的其他基金
IUCRC Phase I University of Southern California: Center for Intelligent Distributed Embedded Applications and Systems (IDEAS)
IUCRC 第一期南加州大学:智能分布式嵌入式应用和系统中心 (IDEAS)
- 批准号:
2231662 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
- 批准号:
2311870 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OAC Core: Scalable Graph ML on Distributed Heterogeneous Systems
OAC 核心:分布式异构系统上的可扩展图 ML
- 批准号:
2209563 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Accelerating Privacy Preserving Deep Learning for Real-time Secure Applications
SaTC:核心:小型:加速实时安全应用程序的隐私保护深度学习
- 批准号:
2104264 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research:PPoSS:Planning: Streamware - A Scalable Framework for Accelerating Streaming Data Science
合作研究:PPoSS:规划:Streamware - 加速流数据科学的可扩展框架
- 批准号:
2119816 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RAPID: ReCOVER: Accurate Predictions and Resource Allocation for COVID-19 Epidemic Response
RAPID:ReCOVER:COVID-19 流行病应对的准确预测和资源分配
- 批准号:
2027007 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CNS Core: Small: AccelRITE: Accelerating ReInforcemenT Learning based AI at the Edge Using FPGAs
CNS 核心:小型:AccelRITE:使用 FPGA 在边缘加速基于强化学习的 AI
- 批准号:
2009057 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
OAC Core: Small: Scalable Graph Analytics on Emerging Cloud Infrastructure
OAC 核心:小型:新兴云基础设施上的可扩展图形分析
- 批准号:
1911229 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
FoMR: DeepFetch: Compact Deep Learning based Prefetcher on Configurable Hardware
FoMR:DeepFetch:可配置硬件上基于紧凑深度学习的预取器
- 批准号:
1912680 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CNS: CSR: Small: Exploiting 3D Memory for Energy-Efficient Memory-Driven Computing
CNS:CSR:小型:利用 3D 内存实现节能内存驱动计算
- 批准号:
1643351 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似海外基金
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Replacing valproate with a safer, broad-spectrum drug for epilepsy treatment
用更安全的广谱药物替代丙戊酸治疗癫痫
- 批准号:
MR/Y019334/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: Integrating Microarchitecture Simulation and Side-Channel Leakage Modeling for Safer Software
职业:集成微架构仿真和侧通道泄漏建模以实现更安全的软件
- 批准号:
2338623 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Safety Advancing Federated Estimation of Risk using AI (SAFER AI)
使用人工智能推进安全联合风险估计 (SAFER AI)
- 批准号:
10093091 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
Harm reduction in homelessness services: evaluating Simon Community Scotland's Safer Spaces approach
无家可归者服务减少危害:评估苏格兰西蒙社区的安全空间方法
- 批准号:
ES/Z502625/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Engineering the Next Generation of Safer Hsp90 Inhibitors
设计下一代更安全的 Hsp90 抑制剂
- 批准号:
10587304 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Couples Advancing Together for Safer Conception (CAT-SC): A couples’-based intervention to improve engagement in sexual and reproductive health services for mobile fisherfolk in Kenya
夫妻共同推进安全受孕 (CAT-SC):基于夫妻的干预措施,旨在提高肯尼亚流动渔民对性健康和生殖健康服务的参与度
- 批准号:
10618411 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
PFI-TT: Eco-friendly concrete for cheaper and safer concrete pipes
PFI-TT:环保混凝土,用于更便宜、更安全的混凝土管道
- 批准号:
2314080 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
PFI-TT: Behavioral Analysis for Safer Communities: Fair and Ethical AI for Trusted Surveillance
PFI-TT:行为分析,打造更安全的社区:公平且符合道德的 AI,实现可信监控
- 批准号:
2329816 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant














{{item.name}}会员




