AitF: Collaborative Research: Theory and Implementation of Dynamic Data Structures for the GPU

AitF:协作研究:GPU 动态数据结构的理论与实现

基本信息

  • 批准号:
    1637442
  • 负责人:
  • 金额:
    $ 43.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Computers organize data in "data structures," which are designed to allow certain operations on data such as looking up all items that match a particular set of criteria, or adding new items to an existing data set. Computer scientists strive to build data structures that can perform these operations quickly and efficiently. One way to make data structure operations faster is to use not just one but many processors, operating in parallel, to perform a given operation. However, many of today's parallel data structures support only a limited set of operations and, notably, do not allow operations that modify these data structures instead of rebuilding an entire structure from scratch when only part of the data is updated. In this project the PIs bring together expertise in data structures and parallel computing to design, build, and evaluate dynamic data structures that allow update operations. This work targets the high-performance, highly-parallel graphics processing unit (GPU) and will significantly broaden the class of applications that the GPU can address. The PIs will release their results as freely-available open-source software and will work with industrial partner NVIDIA to incorporate the research and educational outcomes of this project into NVIDIA's broad educational efforts.In this project the PIs propose to build dynamic, high-performance data structures for manycore (GPU) computing. Today's GPU data structures are rarely constructed on the GPU but instead are built on the CPU and copied to the GPU, and today's GPU data structures cannot be updated dynamically on the GPU but instead must be rebuilt from scratch. This project targets dynamic dictionary data structures with point and range queries, lists, and approximate membership and range query structures. The PIs will implement these data structures as high-performance, flexible, open-source software and use these data structures to develop a theoretical model, targeted at the GPU, for use by theorists and practitioners in manycore computing. The project will also focus on numerous cross-cutting issues in data structure design, implementation, modeling, and evaluation that have the potential for significant practical impact on manycore computing.
计算机以“数据结构”组织数据,这些数据结构旨在允许对数据进行某些操作,例如查找与特定标准集匹配的所有项目,或向现有数据集添加新项目。 计算机科学家努力构建能够快速有效地执行这些操作的数据结构。 使数据结构操作更快的一种方法是使用不仅仅一个而是多个并行操作的处理器来执行给定的操作。 然而,当今的许多并行数据结构仅支持有限的一组操作,并且值得注意的是,不允许修改这些数据结构的操作,而不是在仅更新部分数据时从头开始重建整个结构。 在这个项目中,PI汇集了数据结构和并行计算方面的专业知识,以设计,构建和评估允许更新操作的动态数据结构。 这项工作的目标是高性能,高度并行的图形处理单元(GPU),并将显着扩大类的应用程序,GPU可以解决。 研究者们将以免费开源软件的形式发布他们的成果,并将与行业合作伙伴NVIDIA合作,将该项目的研究和教育成果融入NVIDIA的广泛教育工作中。在该项目中,研究者们提出为众核(GPU)计算构建动态、高性能的数据结构。 今天的GPU数据结构很少在GPU上构建,而是在CPU上构建并复制到GPU,并且今天的GPU数据结构不能在GPU上动态更新,而是必须从头开始重建。 这个项目的目标是带有点和范围查询的动态字典数据结构,列表,以及近似成员和范围查询结构。 PI将把这些数据结构实现为高性能、灵活的开源软件,并使用这些数据结构开发一个针对GPU的理论模型,供众核计算的理论家和实践者使用。 该项目还将关注数据结构设计、实现、建模和评估中的许多交叉问题,这些问题可能对众核计算产生重大的实际影响。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering a high-performance GPU B-Tree
Quotient Filters: Approximate Membership Queries on the GPU
商过滤器:GPU 上的近似成员资格查询
Dynamic Graphs on the GPU
GPU 上的动态图
GPU LSM: A Dynamic Dictionary Data Structure for the GPU
GPU LSM:GPU 的动态字典数据结构
A Dynamic Hash Table for the GPU
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Owens其他文献

Conflict in Medical Co-Production: Can a Stratified Conception of Health Help?
  • DOI:
    10.1007/s10728-011-0186-8
  • 发表时间:
    2011-07-20
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    John Owens;Alan Cribb
  • 通讯作者:
    Alan Cribb
Alternative data transforming SME finance
另类数据改变中小企业融资
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Owens;L. Wilhelm
  • 通讯作者:
    L. Wilhelm
Pathophysiology of Laparoscopic Adjustable Gastric Bands: Analysis and Classification Using High-Resolution Video Manometry and a Stress Barium Protocol
  • DOI:
    10.1007/s11695-009-9970-z
  • 发表时间:
    2009-09-18
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Paul Robert Burton;Wendy A. Brown;Cheryl Laurie;Anna Korin;Kenneth Yap;Melissa Richards;John Owens;Gary Crosthwaite;Geoff Hebbard;Paul E. O’Brien
  • 通讯作者:
    Paul E. O’Brien
Complexity charts can be used to map functional domains in DNA.
复杂性图表可用于绘制 DNA 中的功能域。
Nurse link lecturers' perceptions of the challenges facing student nurses in clinical learning environments: A qualitative study
  • DOI:
    10.1016/j.nepr.2018.07.012
  • 发表时间:
    2018-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Karen Harrison-White;John Owens
  • 通讯作者:
    John Owens

John Owens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Owens', 18)}}的其他基金

SPX: Collaborative Research: Global Address Programming with Accelerators
SPX:协作研究:使用加速器进行全局地址编程
  • 批准号:
    1823037
  • 财政年份:
    2018
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
SI2-SSE: Gunrock: High-Performance GPU Graph Analytics
SI2-SSE:Gunrock:高性能 GPU 图形分析
  • 批准号:
    1740333
  • 财政年份:
    2017
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
High-Performance, High-Level Tools for Statistical Inference and Unsupervised Learning
用于统计推断和无监督学习的高性能、高级工具
  • 批准号:
    1622501
  • 财政年份:
    2016
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Continuing Grant
XPS: FULL: Collaborative Research: PARAGRAPH: Parallel, Scalable Graph Analytics
XPS:完整:协作研究:段落:并行、可扩展图形分析
  • 批准号:
    1629657
  • 财政年份:
    2016
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
SDCI: HPC: Improvement: Infrastructure for Multi-Node Manycore Computing
SDCI:HPC:改进:多节点众核计算基础设施
  • 批准号:
    1032859
  • 财政年份:
    2010
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
SHF: Small: Software Fundamentals for Manycore Systems
SHF:小型:众核系统的软件基础知识
  • 批准号:
    1017399
  • 财政年份:
    2010
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
CDI-Type II Collaborative Research: Understanding social networks, complex systems
CDI-II 型协作研究:理解社交网络、复杂系统
  • 批准号:
    0941371
  • 财政年份:
    2009
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
Dynamic Complexity of Cooperation-Based Self-Organizing Commercial Networks in the First Global Age (DynCoopNet)
第一全球化时代基于合作的自组织商业网络的动态复杂性(DynCoopNet)
  • 批准号:
    0740345
  • 财政年份:
    2007
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
Data Structures for Data-Parallel Architectures
数据并行架构的数据结构
  • 批准号:
    0541448
  • 财政年份:
    2006
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Continuing Grant
Enhancement of Doctoral Research Capacity in Environmental Toxicology at Southern University at Baton Rouge (SUBR)
巴吞鲁日南方大学 (SUBR) 环境毒理学博士研究能力的增强
  • 批准号:
    0450375
  • 财政年份:
    2004
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733680
  • 财政年份:
    2018
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1855760
  • 财政年份:
    2018
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
  • 批准号:
    1733742
  • 财政年份:
    2017
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1733796
  • 财政年份:
    2017
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
  • 批准号:
    1733832
  • 财政年份:
    2017
  • 资助金额:
    $ 43.89万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了