AitF: Collaborative Research: High Performance Linear System Solvers with Focus on Graph Laplacians

AitF:协作研究:关注图拉普拉斯算子的高性能线性系统求解器

基本信息

  • 批准号:
    1637523
  • 负责人:
  • 金额:
    $ 26.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Fast and robust solvers for systems of linear equations are the work horse of many communities in the sciences, engineering, business, and industry. Few pieces of software are so important of all these areas. Recent theoretical progress on efficient solvers for special cases of linear systems, including Symmetric Diagonally Dominant matrices, have sparked a renaissance in faster algorithms for wide classes of optimization problems that have not seen improvements in many years.The main goal of this project is to take the next step to find and implement fast robust solvers that work in seconds on systems that are a factor of 100 to 1000 times larger than is now possible on a modern large workstation. For the applications mentioned above the solver may be called 100s or 1000s times for a single run. As a result, such a solver needs to meet several important requirements: 1) it must be robust enough to not need human intervention between these runs; 2) it must be fast enough to finish all work in a reasonable amount of time. 3) it must be able to handle the very different systems of equations that arise in applications.This project aims to bridge the theoretical and practical aspects of designing efficient and robust solvers for linear systems in graph Laplacians. The PIs plan to develop code packages that have good practical performances as well as provable guarantees in the worst case. Doing so requires them to address a range of issues arising from numerical analysis, combinatorics, high performance computing, and data structures.They plan to address shortcomings of existing packages for solving linear systems in graph Laplacians, specifically their robustness in the presence of widely varying edge weights. Resolving this issue is crucial for bridging the theory and practice of incorporating these solvers in optimization algorithms such as iterative least squares, mirror descent, and interior point methods. Specifically, they will study a variety of theoretical algorithmic tools from the perspective of high performance computing, focusing on topics at the core of data structures, high performance computing, numerical analysis, scientific computing, and graph theory. Progresses on them have the potential of opening up novel lines of investigations on well-studied topics for the team and the students that they will train.
快速和强大的线性方程组解算器是科学、工程、商业和工业中许多社区的工作重点。在所有这些领域中,很少有软件如此重要。在线性系统的特殊情况下,包括对称对角占优矩阵的高效求解器的最新理论进展,引发了更快的算法的复兴,用于多年来没有得到改善的大类优化问题。这个项目的主要目标是下一步寻找并实现快速健壮的求解器,它在几秒钟内就能在比现代大型工作站上可能的系数大100到1000倍的系统上工作。对于上面提到的应用程序,求解器在一次运行中可能被调用100s或1000s次。因此,这样的求解器需要满足几个重要的要求:1)它必须足够健壮,不需要在这些运行之间进行人工干预;2)它必须足够快,以便在合理的时间内完成所有工作。3)它必须能够处理应用中出现的非常不同的方程系统。这个项目的目的是在理论和实践方面架起桥梁,设计高效和健壮的线性系统的拉普拉斯求解器。PI计划开发具有良好实际性能的代码包,并在最坏的情况下提供可证明的保证。要做到这一点,他们需要解决数值分析、组合数学、高性能计算和数据结构所产生的一系列问题。他们计划解决现有图拉普拉斯求解线性系统的软件包的缺点,特别是在边权值变化很大的情况下的健壮性。解决这个问题对于将这些求解器结合到优化算法(如迭代最小二乘法、镜像下降法和内点法)中的理论和实践是至关重要的。具体地说,他们将从高性能计算的角度研究各种理论算法工具,重点关注数据结构、高性能计算、数值分析、科学计算和图论的核心主题。在这些方面的进展有可能为团队和他们将培训的学生开辟关于研究充分的主题的新的调查路线。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle Decompositions
Graph Sketching against Adaptive Adversaries Applied to the Minimum Degree Algorithm
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary Miller其他文献

349 THE AUTOPSY PREVALENCES OF PROSTATE CANCER, BENIGN PROSTATIC HYPERPLASIA, AND HIGH-GRADE PROSTATIC INTRAEPITHELIAL NEOPLASIA ARE HIGHER AMONG CAUCASIAN MEN IN THE U.S. THAN ASIAN MEN IN ASIA
  • DOI:
    10.1016/j.juro.2013.02.1735
  • 发表时间:
    2013-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    J Kellogg Parsons;Christina Magi-Galluzzi;Cornine Joshu;Helen Fedor;Gary Miller;William Nelson;Elizabeth Platz;Angelo DeMarzo
  • 通讯作者:
    Angelo DeMarzo
Minimal toxicity with 3-fat radiotherapy of prostate cancer
  • DOI:
    10.1016/s0360-3016(98)80471-9
  • 发表时间:
    1998-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael D Weil;E David Crawford;Wayne Dzingle;Patricia Cornish;Donald Parnell;Francis Newman;L Michael Glode;Gary Miller;Robert Donahue;Barby Pickett;Mack Roach
  • 通讯作者:
    Mack Roach
Thesis Proposal: Graph Structured Statistical Inference
论文提案:图结构化统计推断
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Sharpnack;Aarti Singh;A. Rinaldo;Larry Wasserman;Gary Miller;E. Arias
  • 通讯作者:
    E. Arias
Computerized tomographic angiography in patients having eSVS Mesh® supported coronary saphenous vein grafts: intermediate term results
  • DOI:
    10.1186/1749-8090-9-126
  • 发表时间:
    2014-08-13
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Uwe Klima;Abdalla A Elsebaey;Mohamed R Gantri;Jochen Bongardt;Gary Miller;Robert W Emery
  • 通讯作者:
    Robert W Emery
Macroparasites in Antarctic Penguins
南极企鹅的大型寄生虫
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Diaz;B. Fusaro;V. Vidal;D. GONZÁLEZ;E. Costa;Meagan L Dewar;R. Gray;M. Power;Gary Miller;Michaela D. J. Blyton;R. Vanstreels;A. Barbosa
  • 通讯作者:
    A. Barbosa

Gary Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary Miller', 18)}}的其他基金

SBIR Phase I: Compact Power-Stack and Packaged Power Module
SBIR 第一阶段:紧凑型电源堆栈和封装电源模块
  • 批准号:
    2126828
  • 财政年份:
    2021
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AF: Medium: Theory and Practice of Optimal Meshing
AF:媒介:最佳网格划分的理论与实践
  • 批准号:
    1065106
  • 财政年份:
    2011
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AF: Small: Algorithm Design Using Spectral Graph Theory
AF:小:使用谱图理论的算法设计
  • 批准号:
    1018463
  • 财政年份:
    2010
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectral Graph Theory and Its Applications
合作研究:谱图理论及其应用
  • 批准号:
    0635257
  • 财政年份:
    2007
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Continuing Grant
Bacterial, Viral and Parasitic Infections in Antarctic Seabirds
南极海鸟的细菌、病毒和寄生虫感染
  • 批准号:
    0086212
  • 财政年份:
    2000
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
NSF-CNPq Collaborative Research: Parallel Elimination Orders with Applications in Operations Research and Scientific Computing
NSF-CNPq 合作研究:并行消除顺序及其在运筹学和科学计算中的应用
  • 批准号:
    9900304
  • 财政年份:
    1999
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
Automatic and Adaptive Mesh Generation with Applications to Scientific Computing
自动和自适应网格生成及其在科学计算中的应用
  • 批准号:
    9902091
  • 财政年份:
    1999
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
DNA Fingerprinting Exercise for the Biology Freshman Laboratory Program
生物学新生实验室项目的 DNA 指纹识别练习
  • 批准号:
    9850783
  • 财政年份:
    1998
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
Algorithm Design and Implementation for Parallel Scientific Computation
并行科学计算的算法设计与实现
  • 批准号:
    9505472
  • 财政年份:
    1995
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Continuing Grant
Dynamics of Subcolonies in the Adelie Penguin
阿德利企鹅亚群动态
  • 批准号:
    9311804
  • 财政年份:
    1993
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733680
  • 财政年份:
    2018
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    1855760
  • 财政年份:
    2018
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
  • 批准号:
    1733742
  • 财政年份:
    2017
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1733796
  • 财政年份:
    2017
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
  • 批准号:
    1733832
  • 财政年份:
    2017
  • 资助金额:
    $ 26.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了