AitF: Collaborative Research: Modeling movement on transportation networks using uncertain data
AitF:协作研究:使用不确定数据对交通网络上的运动进行建模
基本信息
- 批准号:1637576
- 负责人:
- 金额:$ 31.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the current data-centered era, there are many highly diverse data sources that provide information about movement on transportation networks. Examples include GPS trajectories, social media data, and traffic flow measurements. Much of this movement data is challenging to utilize due to the inherent uncertainty caused by infrequent sampling and sparse coverage. The goal of this project is to develop a unified framework that uses as many available data sources as possible to extract meaningful traffic and movement information automatically from the data. Probabilistic network movement models will be developed that capture movement probabilities and traffic volume on a network over time. The results will impact a range of applications that rely on capturing population movements, such as urban planning, geomarketing, traffic management, and emergency management. Educational activities will be integrated throughout the project. Students will be closely involved in research and practical implementations, and will be trained in spatio-temporal data management, algorithms development, and (trajectory) data analysis. The combination of such skills is increasingly important in spatial data science. Topics involved in this project will enrich the course material and curriculum development at both institutions. The objective of this project is to create a unified framework for aggregating and analyzing diverse and uncertain movement data on road networks, with the aim to provide tools for querying and predicting traffic volume and movement. Probabilistic movement models on the network will be developed that can handle heterogeneous data sources, including GPS trajectories, geo-tagged social media data, bike-share data, public transport data, and traffic volume data. The diversity and spatio-temporal uncertainty of this data will be addressed with a Bayesian traffic pattern learning approach that first trains the movement models with the more certain data, which in turn will be used to fill gaps in the more uncertain data. The project will advance the state-of-the-art in theoretical communities (computational geometry, data mining) as well as in applied communities (spatial databases, location science). The results of the research will available on the project website (movementanalytics.org), and will be disseminated in prestigious venues through presentations and demonstrations at conferences, and through publications in journals.
在当前以数据为中心的时代,有许多高度多样化的数据源提供交通网络上的运动信息。例子包括GPS轨迹、社交媒体数据和交通流量测量。由于不频繁的采样和稀疏的覆盖范围所导致的固有不确定性,许多运动数据的利用是具有挑战性的。该项目的目标是开发一个统一的框架,使用尽可能多的可用数据源,从数据中自动提取有意义的交通和运动信息。将开发概率网络移动模型,以捕获移动概率和网络上随时间的交通量。其结果将影响一系列依赖于捕捉人口流动的应用,如城市规划、地理营销、交通管理和应急管理。教育活动将贯穿整个项目。学生将密切参与研究和实际实施,并将在时空数据管理,算法开发和(轨迹)数据分析方面进行培训。这些技能的结合在空间数据科学中越来越重要。该项目涉及的主题将丰富两所院校的课程材料和课程开发。该项目的目标是创建一个统一的框架,用于聚合和分析道路网络上各种不确定的运动数据,旨在提供查询和预测交通量和运动的工具。网络上的概率运动模型将被开发,可以处理异构数据源,包括GPS轨迹、地理标记的社交媒体数据、自行车共享数据、公共交通数据和交通量数据。该数据的多样性和时空不确定性将通过贝叶斯交通模式学习方法来解决,该方法首先用更确定的数据训练运动模型,然后将其用于填补更不确定数据中的空白。该项目将推进理论界(计算几何、数据挖掘)和应用界(空间数据库、定位科学)的最新技术。研究结果将在项目网站(movementanalytics.org)上公布,并将通过在会议上的演讲和演示以及在期刊上的出版物在知名场所传播。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global Curve Simplification
全局曲线简化
- DOI:10.4230/lipics.esa.2019.67
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:van de Kerkhof, Mees;Kostitsyna, Irina;Löffler, Maarten;Mirzanezhad, Majid;Wenk, Carola
- 通讯作者:Wenk, Carola
Inferring movement patterns from geometric similarity
- DOI:10.5311/josis.2020.21.724
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:M. Buchin;C. Wenk
- 通讯作者:M. Buchin;C. Wenk
Simplification of Indoor Space Footprints
室内空间足迹的简化
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kim, Joon-Seok;Wenk, Carola
- 通讯作者:Wenk, Carola
A Unified Framework to Predict Movement
预测运动的统一框架
- DOI:10.1007/978-3-319-64367
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Gkountouna, Olga;Pfoser, Dieter;Wenk, Carola;Zuefle, Andreas
- 通讯作者:Zuefle, Andreas
Graph Sampling for Map Comparison
- DOI:10.1145/3662733
- 发表时间:2023-12
- 期刊:
- 影响因子:1.9
- 作者:J. Aguilar;K. Buchin;M. Buchin;Erfan Hosseini Sereshgi;Rodrigo I. Silveira;C. Wenk
- 通讯作者:J. Aguilar;K. Buchin;M. Buchin;Erfan Hosseini Sereshgi;Rodrigo I. Silveira;C. Wenk
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carola Wenk其他文献
Matching Polyhedral Terrains Using Overlays of Envelopes
- DOI:
10.1007/s00453-004-1107-0 - 发表时间:
2004-10-15 - 期刊:
- 影响因子:0.700
- 作者:
Vladlen Koltun;Carola Wenk - 通讯作者:
Carola Wenk
Realizability of Free Spaces of Curves
曲线自由空间的可实现性
- DOI:
10.48550/arxiv.2311.07573 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
H. Akitaya;M. Buchin;Majid Mirzanezhad;Leonie Ryvkin;Carola Wenk - 通讯作者:
Carola Wenk
Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries
- DOI:
10.1007/s00454-022-00416-6 - 发表时间:
2022-09-30 - 期刊:
- 影响因子:0.600
- 作者:
Parker Evans;Carola Wenk - 通讯作者:
Carola Wenk
Building an institutional base for Computational Neuroscience: the CBI at UTSA/UTHSCSA
- DOI:
10.1186/1471-2202-11-s1-p67 - 发表时间:
2010-07-20 - 期刊:
- 影响因子:2.300
- 作者:
Zhiwei Wang;Kay Robbins;Yufeng Wang;Carolina Livi;Alan D Coop;Fidel Santamaria;Carola Wenk;James M Bower - 通讯作者:
James M Bower
Carola Wenk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carola Wenk', 18)}}的其他基金
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2107434 - 财政年份:2021
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664848 - 财政年份:2017
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Geometric and Topological Algorithms for Analyzing Road Network Data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
- 批准号:
1618469 - 财政年份:2016
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
- 批准号:
1557750 - 财政年份:2015
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
CAREER: Application and Theory of Geometric Shape Handling
职业:几何形状处理的应用和理论
- 批准号:
1331009 - 财政年份:2012
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
AF: Small: Geometric Algorithms for Constructing Road Networks from Trajectories
AF:小:根据轨迹构建道路网络的几何算法
- 批准号:
1216602 - 财政年份:2012
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AF: Small: Geometric Algorithms for Constructing Road Networks from Trajectories
AF:小:根据轨迹构建道路网络的几何算法
- 批准号:
1301911 - 财政年份:2012
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
CAREER: Application and Theory of Geometric Shape Handling
职业:几何形状处理的应用和理论
- 批准号:
0643597 - 财政年份:2007
- 资助金额:
$ 31.77万 - 项目类别:
Continuing Grant
SGER: Map-Matching and Reactive Routing Algorithms for Traffic Estimation and Prediction Systems
SGER:用于交通估计和预测系统的地图匹配和反应式路由算法
- 批准号:
0628809 - 财政年份:2006
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
相似海外基金
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
2051197 - 财政年份:2020
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1940759 - 财政年份:2019
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
2006206 - 财政年份:2019
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733812 - 财政年份:2018
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
- 批准号:
1854742 - 财政年份:2018
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
- 批准号:
1733680 - 财政年份:2018
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
- 批准号:
1855760 - 财政年份:2018
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Automated Medical Image Segmentation via Object Decomposition
AitF:协作研究:通过对象分解进行自动医学图像分割
- 批准号:
1733742 - 财政年份:2017
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
- 批准号:
1733796 - 财政年份:2017
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Algorithms and Mechanisms for the Distribution Grid
AitF:协作研究:配电网算法和机制
- 批准号:
1733832 - 财政年份:2017
- 资助金额:
$ 31.77万 - 项目类别:
Standard Grant