QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
基本信息
- 批准号:1557750
- 负责人:
- 金额:$ 5.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Subjective analyses of images by pathologist reviewers are plagued by issues of inter-rater variability and throughput. However, as digital pathology whole slide scanners become more commonplace, the amount of high-quality pathology image data available to researchers and clinicians is increasing, and the newfound widespread availability of pathology images in digital form, including the NCI Cancer Genome Atlas (TGCA), opens up new possibilities to use computational approaches to leverage the information inherent within them for diagnosis, prognosis, and precision medicine. This award supports initiation of a collaborative research project that aims to discover new quantitative image-based prognostic biomarkers for prostate cancer, focusing on an investigation of novel concepts from computational topology applied to prostate cancer glandular architecture. The current standard for prostate cancer grading is the Gleason score, which is a subjective rating system based on an analysis of high-level tissue architecture and glandular shape and organization. However, Gleason scoring is variable between pathology reviewers, and may not capture all of the potentially prognostic information contained in glandular growth patterns. In this project, new topological descriptors will be developed that capture architectural features of prostate glands in pathology images. These descriptors can then be used to aid pathologists by providing more quantitative and more reproducible analogs to the traditional Gleason scores, and they may have independent prognostic value. They can also be used to classify slides in order to distinguish between different types of cancerous architectures of glands, compared to the current gold-standard histopathological and molecular characterization. In particular, the aim of this project is to demonstrate effectiveness of using computational methods based on tools from computational geometry and topology to recognize and quantify glandular architectural features. Glandular density will be the first architectural feature quantified in this collaborative work. This award is supported by the National Institutes of Health Big Data to Knowledge (BD2K) Initiative in partnership with the National Science Foundation Division of Mathematical Sciences.
病理审稿人对图像的主观分析受到评分间变异性和吞吐量问题的困扰。然而,随着数字病理整片扫描仪变得越来越普遍,研究人员和临床医生可以获得的高质量病理图像数据的数量正在增加,并且新发现的数字形式病理图像的广泛可用性,包括NCI癌症基因组图谱(TGCA),为使用计算方法利用其中固有的信息进行诊断、预后和精准医学开辟了新的可能性。该奖项支持启动一项合作研究项目,旨在发现新的基于定量图像的前列腺癌预后生物标志物,重点研究应用于前列腺癌腺体结构的计算拓扑新概念。目前的前列腺癌分级标准是Gleason评分,这是一种基于高层次组织结构和腺体形状和组织分析的主观评分系统。然而,Gleason评分在病理审稿人之间是可变的,并且可能无法捕获腺体生长模式中包含的所有潜在预后信息。在这个项目中,将开发新的拓扑描述符来捕捉病理图像中前列腺的结构特征。这些描述符可以用来帮助病理学家,为传统的格里森评分提供更多的定量和可重复的类似物,并且它们可能具有独立的预后价值。与目前的金标准组织病理学和分子表征相比,它们还可以用于对载玻片进行分类,以区分不同类型的腺体癌结构。特别地,这个项目的目的是证明使用基于计算几何和拓扑工具的计算方法来识别和量化腺状建筑特征的有效性。腺密度将是这个合作项目中第一个量化的建筑特征。该奖项由美国国立卫生研究院大数据到知识(BD2K)计划与美国国家科学基金会数学科学部合作支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carola Wenk其他文献
Matching Polyhedral Terrains Using Overlays of Envelopes
- DOI:
10.1007/s00453-004-1107-0 - 发表时间:
2004-10-15 - 期刊:
- 影响因子:0.700
- 作者:
Vladlen Koltun;Carola Wenk - 通讯作者:
Carola Wenk
Realizability of Free Spaces of Curves
曲线自由空间的可实现性
- DOI:
10.48550/arxiv.2311.07573 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
H. Akitaya;M. Buchin;Majid Mirzanezhad;Leonie Ryvkin;Carola Wenk - 通讯作者:
Carola Wenk
Combinatorial Properties of Self-Overlapping Curves and Interior Boundaries
- DOI:
10.1007/s00454-022-00416-6 - 发表时间:
2022-09-30 - 期刊:
- 影响因子:0.600
- 作者:
Parker Evans;Carola Wenk - 通讯作者:
Carola Wenk
Building an institutional base for Computational Neuroscience: the CBI at UTSA/UTHSCSA
- DOI:
10.1186/1471-2202-11-s1-p67 - 发表时间:
2010-07-20 - 期刊:
- 影响因子:2.300
- 作者:
Zhiwei Wang;Kay Robbins;Yufeng Wang;Carolina Livi;Alan D Coop;Fidel Santamaria;Carola Wenk;James M Bower - 通讯作者:
James M Bower
Carola Wenk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carola Wenk', 18)}}的其他基金
Collaborative Research: AF: Medium: A Unified Framework for Geometric and Topological Signature-Based Shape Comparison
合作研究:AF:Medium:基于几何和拓扑签名的形状比较的统一框架
- 批准号:
2107434 - 财政年份:2021
- 资助金额:
$ 5.29万 - 项目类别:
Continuing Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664848 - 财政年份:2017
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
AitF: Collaborative Research: Modeling movement on transportation networks using uncertain data
AitF:协作研究:使用不确定数据对交通网络上的运动进行建模
- 批准号:
1637576 - 财政年份:2016
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: Geometric and Topological Algorithms for Analyzing Road Network Data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
- 批准号:
1618469 - 财政年份:2016
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
CAREER: Application and Theory of Geometric Shape Handling
职业:几何形状处理的应用和理论
- 批准号:
1331009 - 财政年份:2012
- 资助金额:
$ 5.29万 - 项目类别:
Continuing Grant
AF: Small: Geometric Algorithms for Constructing Road Networks from Trajectories
AF:小:根据轨迹构建道路网络的几何算法
- 批准号:
1216602 - 财政年份:2012
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
AF: Small: Geometric Algorithms for Constructing Road Networks from Trajectories
AF:小:根据轨迹构建道路网络的几何算法
- 批准号:
1301911 - 财政年份:2012
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
CAREER: Application and Theory of Geometric Shape Handling
职业:几何形状处理的应用和理论
- 批准号:
0643597 - 财政年份:2007
- 资助金额:
$ 5.29万 - 项目类别:
Continuing Grant
SGER: Map-Matching and Reactive Routing Algorithms for Traffic Estimation and Prediction Systems
SGER:用于交通估计和预测系统的地图匹配和反应式路由算法
- 批准号:
0628809 - 财政年份:2006
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
相似海外基金
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664858 - 财政年份:2017
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664848 - 财政年份:2017
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Precision medicine and the management of infectious diseases
QuBBD:合作研究:精准医学和传染病管理
- 批准号:
1557742 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557593 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557642 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Personalized Predictive Neuromarkers for Stress-Related Health Risks
QuBBD:合作研究:压力相关健康风险的个性化预测神经标志物
- 批准号:
1557572 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557727 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557559 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557679 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557712 - 财政年份:2015
- 资助金额:
$ 5.29万 - 项目类别:
Standard Grant