NRI: Task-Based Assistance for Software-Enabled Biomedical Devices
NRI:针对软件支持的生物医学设备的基于任务的援助
基本信息
- 批准号:1637764
- 负责人:
- 金额:$ 42.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1637764 - MurpheyRobotic assistive devices help people execute and learn physical tasks. Sometimes these tasks are relatively simple, sometimes they are in a particular context, and sometimes they are highly dynamic and very task specific. This work will create algorithms that enable the delivered assistance to take into account algorithmic descriptions of the underlying task. As an example, walking is a highly structured task that simultaneously requires efficiency and stability during motion and must take into account terrain characteristics. The work takes advantage of task knowledge to either modify a person's motion or exert forces that help the person complete the task. This capability is relevant to rehabilitation and physical therapy, where one may wish to only minimally help a person in order to improve therapy outcomes. This work will therefore impact the development of software that supports people engaged in robot-assisted physical therapy, including people recovering from various forms of injury. The key to this work is that knowledge of a task is combined with knowledge of a person's capabilities to synthesize software decisions that ensure safety while also maximizing a person's agency during motion. Broader impact of this work includes technology transfer to rehabilitation, outreach through the Museum of Science and Industry in Chicago, classroom innovation, and industry collaboration.The proposed work will create software-enabled, task-specific support for assistive biomedical devices. Dynamic tasks require that a combination of the robot and the assisted person be both effective and safe, and the proposed research will create algorithms and software that ensure efficacy and safety while leaving the user free to both move and exert effort. The latter is important in contexts like physical therapy, where effort is important to therapeutic impact. The proposed work will leverage recent results in real-time nonlinear optimal control techniques for human-in-the-loop systems. Specifically, sequential action control (SAC) will be used to both filter and assist human subject dynamic behavior, using a method called the Maxwell's Demon Algorithm. The work will additionally develop formal methodologies for establishing stability and performance guarantees for the proposed algorithms. Lastly, the proposed work will develop compact representations of the controlled assistance algorithms appropriate for computationally minimal embedded systems. All the work will be developed in the Robot Operating System (ROS), making the developed tools widely available to both researchers and companies. The algorithms will be tested on haptic devices and an exoskeleton. The broader impacts for this work will include outreach, technology transfer to rehabilitation, the development of courses in dynamics and analysis, and industrial collaboration. The PI is currently working with the Museum of Science and Industry, and as part of the proposed work the PI and supported students will participate in a National Robotics Week exhibit in the main rotunda of the museum with an estimated viewership of over ten thousand on-site visitors. The PI is involved in significant classroom innovations, and the proposed work will include development of courses in analysis and dynamics. Lastly, the project will include a collaboration with Ekso Bionics, leveraging and impacting their unparalleled expertise in exoskeleton development.
1637764 -Murpheyrobotic辅助设备可帮助人们执行和学习身体任务。有时,这些任务相对简单,有时它们处于特定环境中,有时它们是高度动态且非常具体的。这项工作将创建算法,使交付的帮助可以考虑基础任务的算法描述。例如,步行是一项高度结构化的任务,同时需要运动过程中的效率和稳定性,并且必须考虑地形特征。该工作利用任务知识来修改一个人的运动或发挥帮助人完成任务的力量。这种能力与康复和物理疗法有关,在这里,人们可能只希望最少帮助一个人以改善治疗结果。因此,这项工作将影响支持从事机器人辅助物理疗法的人们的软件的开发,包括从各种形式的伤害中恢复过来的人。这项工作的关键是,对任务的知识与人合成软件决策能力的知识相结合,以确保安全性,同时在运动期间最大化人的代理商。这项工作的更广泛的影响包括通过芝加哥科学与工业博物馆,课堂创新和行业合作的技术转移,宣传。拟议的工作将为辅助生物医学设备创建针对软件的,特定于任务的支持。动态任务要求机器人和辅助人员的结合既有效又安全,并且拟议的研究将创建算法和软件,以确保有效性和安全性,同时让用户自由移动和努力。后者在物理治疗等环境中很重要,在物理治疗中,努力对治疗影响很重要。拟议的工作将利用针对人类在循环系统的实时非线性最佳控制技术的最新结果。具体而言,使用称为麦克斯韦的恶魔算法的方法,将使用顺序动作控制(SAC)来滤除和协助人类主体动态行为。这项工作还将开发出正式的方法,以建立拟议算法的稳定性和性能保证。最后,拟议的工作将开发适合计算最小嵌入式系统的受控辅助算法的紧凑表示。所有工作将在机器人操作系统(ROS)中开发,使开发的工具可为研究人员和公司广泛使用。该算法将在触觉设备和外骨骼上进行测试。这项工作的更广泛影响将包括外展,康复技术转移,动态和分析课程的发展以及工业合作。 PI目前正在与科学和工业博物馆合作,作为拟议作品的一部分,PI和支持学生将参加博物馆主要圆形大厅的全国机器人周展览会,估计有一千多个现场访客的收视率。 PI参与了重要的课堂创新,拟议的工作将包括开发分析和动态课程。最后,该项目将包括与Ekso Bionics的合作,利用和影响其在外骨骼开发方面的无与伦比的专业知识。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Gait Segmentation for Walking Assistance in a Lower-Limb Assistive Device
- DOI:10.1109/icra.2019.8794416
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:A. Kalinowska;Thomas A. Berrueta;A. Zoss;T. Murphey
- 通讯作者:A. Kalinowska;Thomas A. Berrueta;A. Zoss;T. Murphey
Task-based hybrid shared control for training through forceful interaction
基于任务的混合共享控制,通过强制交互进行训练
- DOI:10.1177/0278364920933654
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Fitzsimons, Kathleen;Kalinowska, Aleksandra;Dewald, Julius P;Murphey, Todd D
- 通讯作者:Murphey, Todd D
Online User Assessment for Minimal Intervention During Task-Based Robotic Assistance
在基于任务的机器人协助期间进行最小干预的在线用户评估
- DOI:10.15607/rss.2018.xiv.046
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Kalinowska, Aleksandra;Fitzsimons, Kathleen;Dewald, Julius;Murphey, Todd
- 通讯作者:Murphey, Todd
Ergodicity reveals assistance and learning from physical human-robot interaction
- DOI:10.1126/scirobotics.aav6079
- 发表时间:2019-04-24
- 期刊:
- 影响因子:25
- 作者:Fitzsimons, Kathleen;Acosta, Ana Maria;Murphey, Todd D.
- 通讯作者:Murphey, Todd D.
Shoulder abduction loading affects motor coordination in individuals with chronic stroke, informing targeted rehabilitation
肩外展负荷影响慢性中风患者的运动协调性,为有针对性的康复提供信息
- DOI:10.1109/biorob49111.2020.9224454
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kalinowska, Aleksandra;Rudy, Kyra;Schlafly, Millicent;Fitzsimons, Kathleen;Dewald, Julius P;Murphey, Todd D
- 通讯作者:Murphey, Todd D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Murphey其他文献
Fast Ergodic Search with Kernel Functions
使用核函数进行快速遍历搜索
- DOI:
10.48550/arxiv.2403.01536 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Muchen Sun;Ayush Gaggar;Peter Trautman;Todd Murphey - 通讯作者:
Todd Murphey
Mixed-Strategy Nash Equilibrium for Crowd Navigation
人群导航的混合策略纳什均衡
- DOI:
10.48550/arxiv.2403.01537 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Muchen Sun;Francesca Baldini;Peter Trautman;Todd Murphey - 通讯作者:
Todd Murphey
Todd Murphey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Murphey', 18)}}的其他基金
FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control
FRR:协作研究:用于水生机器人感知和控制的无监督主动学习
- 批准号:
2237576 - 财政年份:2023
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
CPS: Medium: Information based Control of Cyber-Physical Systems operating in uncertain environments
CPS:中:在不确定环境中运行的信息物理系统的基于信息的控制
- 批准号:
1837515 - 财政年份:2018
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Information-driven Autonomous Exploration in Uncertain Underwater Environments
RI:小型:协作研究:不确定水下环境中信息驱动的自主探索
- 批准号:
1717951 - 财政年份:2017
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
Stability and Optimality Properties of Sequential Action Control for Nonlinear and Hybrid Systems
非线性和混合系统顺序动作控制的稳定性和最优性
- 批准号:
1662233 - 财政年份:2017
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
NRI: Autonomous Synthesis of Haptic Languages
NRI:触觉语言的自主合成
- 批准号:
1426961 - 财政年份:2014
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
Collaborative Research: Ergodic Trajectories in Discrete Mechanics
协作研究:离散力学中的遍历轨迹
- 批准号:
1334609 - 财政年份:2013
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Mutually Stabilized Correction in Physical Demonstration
CPS:协同:协作研究:物理演示中的相互稳定校正
- 批准号:
1329891 - 财政年份:2013
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
Physical Design and Feedback Control of Hybrid Mechanical Systems
混合机械系统的物理设计和反馈控制
- 批准号:
1200321 - 财政年份:2012
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
RI: Small: Hierarchical Planning, Estimation, and Control for Hybrid Mechanical Systems
RI:小型:混合机械系统的分层规划、估计和控制
- 批准号:
1018167 - 财政年份:2010
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
CAREER: Planning and Control for Overconstrained Mechanisms
职业:过度约束机制的规划和控制
- 批准号:
0951688 - 财政年份:2009
- 资助金额:
$ 42.98万 - 项目类别:
Standard Grant
相似国自然基金
复合场景下基于多模态融合的轻量化任务处理与模型泛化研究
- 批准号:62372111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于动态交互与任务协同的双目降质图像复原方法研究
- 批准号:62301092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多任务学习的NLP模型版权保护技术研究
- 批准号:62362025
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于深度渐进学习的CT图像重建和多任务协同式AI辅助诊断模型研究
- 批准号:62371190
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于多时序纵向3D超声图像Siamese多任务网络早期预测pMMR型局部进展期直肠癌PD-1单抗联合放化疗疗效
- 批准号:82302209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 42.98万 - 项目类别:
Investigating facilitator-driven, multi-level implementation strategies in Federally Qualified Health Centers to improve provider recommendation and HPV vaccination rates among Latino/a adolescents
调查联邦合格健康中心中促进者驱动的多层次实施策略,以提高拉丁裔/非裔青少年的医疗服务提供者推荐和 HPV 疫苗接种率
- 批准号:
10737168 - 财政年份:2023
- 资助金额:
$ 42.98万 - 项目类别:
Testing a Memory-Based Hypothesis for Anhedonia
测试基于记忆的快感缺失假设
- 批准号:
10598974 - 财政年份:2023
- 资助金额:
$ 42.98万 - 项目类别:
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 42.98万 - 项目类别:
Characterizing neuroimaging 'brain-behavior' model performance bias in rural populations
表征农村人口神经影像“大脑行为”模型的表现偏差
- 批准号:
10752053 - 财政年份:2023
- 资助金额:
$ 42.98万 - 项目类别: